京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量化投资—为什么选择Python
Python在量化领域的现状
就跟JavaScript在web领域无可撼动的地位一样,Python也已经在金融量化投资领域占据了重要位置,从各个业务链条都能找到相应的框架实现。
在量化投资(证券和比特币)开源项目里,全球star数排名前10位里面,有7个是Python实现的。从数据获取到策略回测再到交易,覆盖了整个业务链。
而全球注册用户数最多的商业量化平台Uqer优矿,也同样是基于Python实现和提供服务的。国内后来的其他量化平台,例如RiceQuant和JoinQuant,也主推Python环境。可见Python在量化平台应用的绝对占有程度。
为什么是Python?
Python是一门比较全面与平衡的语言,既能满足包括web在内的系统应用的开发,又能满足数据统计分析等数学领域的计算需求,同时也能作为胶水语言跟其它开发语言互通融合。
在数据分析方面,没有其他语言能像Python这样既能精于计算又能保持性能,对于时间序列数据的处理展现了简单便捷的优势。而如此适用的特点,主要得益于有如下框架和工具的支持:
Numpy:底层基于C实现的科学计算包
具有强大的N维数组对象;Array具有数据广播功能的函数库;具有完整的线性代数和随机数生成函数
SciPy:开源算法和数学工具包
最优化线性代数、积分、插值、特殊函数;快速傅里叶变换;信号处理和图像处理常微分方程求解;其他科学与工程中常用的计算
其功能与Matlab和Scilab等类似
Pandas:起源于AQR的数据处理包,具有金融数据分析基因
基于Series、DataFrame和Pannel多维表结构数据;数据自动对齐功能;数据清洗和计算功能;时间序列数据快速处理功能
Matplotlib:基于Python的数据绘图包,能够绘制出各类丰富的图形和报表
另外,Python在机器学习领域的应用也越来越多,其中的开源项目包括了scikit-learn、Theano、Orange等
Python的特点
1、简单易学Python是一门简单而又简约的语言。阅读好的Python程序感觉就像阅读英语。Python非常容易上手,学习曲线比较平缓。
2、高级语言垃圾自动处理且面向对象的高级语言。Python 具备所有脚本语言的简单和易用性,并且具有在编译语言中才能找到的高级软件工程工具。
3、扩展移植可与其他语言无缝对接并能实现跨平台。
4、开源项目只要能想到的,几乎都有现成的包能找到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08