
大数据爆发前仍需度过两大瓶颈
随着互联网技术日新月异,人类的线下行为逐渐迁移线上。过去人的沟通、社交、办公以及日常生活场景等其他物理行为在日益发展的强大技术背景下都将被全部数字化,现实场景数字化到线上,对个人意味着足不出户就能得到个性化、智慧化的服务,对企业意味着不在费尽周折了解一个客户过去交易记录,只需查看此客户过去的一些交易行为数据,立刻判断该客户值不值得合作。
这些个人日常行为以及企业交易行为通过日积月累而产生的大量数据,无论从容量、种类还是速度与过去已不可同日而语,甲骨文大中华区技术总经理喻思成表示:大数据时代的数据源不仅有传统的结构化数据,还有非结构化数据。大数据处理方式的要求也完全不一样了。我们并不是要完全颠覆数据管理和处理体系,而是要在原有基础上增加新的处理方式,形成更完善更完整的体系
大量数据产生的背后彰显出的是一个新产业变革的前夜,通过对大量数据的挖掘、整理、分析、利用并实现数据价值,是目前业界较关注的话题。
在记者采访多名企业CIO后,大多数企业CIO认为,国内能利用大数据背后产业价值的行业主要集中在金融、电信、能源、证券、物流行业,其他行业谈大数据价值为时尚早。虽然有反对的声音,但不得不承认在技术快速变革当今浪潮下,大量数据的产生已成必然趋势。
在科学和体育、广告和公共卫生等其他许多领域中,也有着类似的情况--就是朝着数据驱动型的发现和决策的方向发生转变。哈佛大学量化社会科学学院(Institute
for Quantitative Social
Science)院长加里-金称:“这是一种革命,我们确实正在进行这场革命,庞大的新数据来源所带来的量化转变将在学术界、企业界和政界中迅速蔓延开来。没有哪个领域不会受到影响。”
市场分析公司Ventana Research的研究表明,最常见的企业大数据类型是客户数据和交易数据。被最常分析的非机构化数据源主要是应用系统日志和事件数据,比如RFID标签信息、网络流量和监控数据。但增长最快的非结构化数据还是各类社交媒体上的文本信息。
但如何利用这些数据背后所承载的价值是目前业界思考的热切话题以及接下来需要面对的大数据挑战。
首先大数据的出现催生出产业人才缺口瓶颈,在大数据项目的实施方面,被调查公司普遍缺乏相关的技术能力。75%以上的公司表示在人员和培训方面存在障碍,会开源大数据技术Hadoop的人才很热门,但是比较难找而且昂贵。其它技术方面的挑战还包括实时数据的处理、大数据与传统的BI和数据仓库工具的整合、数据的安全性等。
SAS软件总经理刘政认为:大数据严重人才短缺,欧美公司也在中国寻找人才,但他们不知道中国本身大数据人才更匮乏。将来一个国家的竞争力很大程度上决定于分析人员,要通过数据分析结果做决策。所以分析人员的水平对于国家和企业的竞争力来说都是非常重要的,其次是商业模式问题,一个产业获得良性发展,需要好的商业模式加以驱动才能持续发展,
有业内专家表示不同行业数据需用不同的商业模式加以驱动,落地之前还需要细化与深化,特别是具体的行业应用,也有人认为,想清楚商业模式,价值才有根基,有了商业模式,大数据模型、算法也有了方向。就如啤酒与尿布,发现这个规律,数据价值方向也就彰显端倪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15