
最小二乘法线性拟合和2次曲线拟合算法
最近由于项目要求,应用了最小二乘法线性拟合和2次曲线拟合算法,现总结如下:
最小二乘法线性拟合应用已有的采样时间点,再现这些点所描述的线性变化,即求出一个线性方程y=ax+b(这个算法的主要问题也就是如何用给定的数据求线性方程系数a和b)
//最小二乘法线性拟合,线性方程求系数,Xval时间数据,Yval每个时间点上的值数据,n数据的个数,Aval线性方程系数a,Bval线性方程系数b
BOOL DlgDataAnalyse::TwoCurveCompose(double *Xval,double *Yval,long n,double *Aval,double *Bval)
{
double mX,mY,mXX,mXY;
mX=mY=mXX=mXY=0;
for (int i=0;i
mX+=Xval[i];
mY+=Yval[i];
mXX+=Xval[i]*Xval[i];
mXY+=Xval[i]*Yval[i];
}
if(mX*mX-mXX*n==0)return FALSE;
*Aval=(mY*mX-mXY*n)/(mX*mX-mXX*n);
*Bval=(mY-mX*(*Aval))/n;
return TRUE;
}
最小二乘法2次曲线拟合应用已有的采样时间点,再现这些点所描述的2次曲线的变化,即求出一个二次曲线方程y=ax2+bx+c (这个算法的主要问题也就是如何用给定的数据求方程系数abc)
今天使用拟合的最小二乘法,求出了给定的一组坐标系上的点对最接近的直线的。
其具体理论如下:
在科学实验数据处理中,往往要根据一组给定的实验数据,求出自变量x与因变量y的函数关系
,这是
为待定参数,由于观测数据总有误差,且待定参数ai的数量比给定数据点的数量少(即n<m),因此它不同于插值问题.这类问题不要求
通过点
,而只要求在给定点
上的误差
的平方和
最小.当
时,即
(5.8.1)
这里是线性无关的函数族,假定在
上给出一组数据
,
以及对应的一组权
,这里
为权系数,要求
使
最小,其中
(5.8.2)
这就是最小二乘逼近,得到的拟合曲线为y=s(x),这种方法称为曲线拟合的最小二乘法.
(5.8.2)中实际上是关于
的多元函数,求I的最小值就是求多元函数I的极值,由极值必要条件,可得
(5.8.3)
根据内积定义(见第三章)引入相应带权内积记号
(5.8.4)
则(5.8.3)可改写为
这是关于参数的线性方程组,用矩阵表示为
(5.8.5)
(5.8.5)称为法方程.当线性无关,且在点集
上至多只有n个不同零点,则称
在X上满足Haar条件,此时(5.8.5)的解存在唯一(证明见[3]).记(5.8.5)的解为
从而得到最小二乘拟合曲线
(5.8.6)
可以证明对,有
故(5.8.6)得到的即为所求的最小二乘解.它的平方误差为
(5.8.7)
均方误差为
在最小二乘逼近中,若取,则
,表示为
(5.8.8)
此时关于系数的法方程(5.8.5)是病态方程,通常当n≥3时都不直接取
作为基。
//最小二乘法二次曲线拟合算法,Xval时间数据,Yval每个时间点上的值数据,M代表几次曲线(如:2次的话就是3),N数据的个数,A二次曲线方程的系数(A[2]代表a,A[1]代表b,A[0]代表c)
BOOL DlgDataAnalyse::CalculateCurveParameter(double *Xval,double *Yval,long M,long N,double *A)
{
//X,Y -- X,Y两轴的坐标
//M -- 次数,表示几次曲线
//N -- 采样数目
//A -- 结果参数
register long i,j,k;
double Z,D1,D2,C,P,G,Q;
CDoubleArray B,T,S;
B.SetSize(N);
T.SetSize(N);
S.SetSize(N);
if(M>N)M=N;
for(i=0;i
Z=0;
B[0]=1;
D1=N;
P=0;
C=0;
for(i=0;i
P=P+Xval[i]-Z;
C=C+Yval[i];
}
C=C/D1;
P=P/D1;
A[0]=C*B[0];
if(M>1)
{
T[1]=1;
T[0]=-P;
D2=0;
C=0;
G=0;
for(i=0;i
Q=Xval[i]-Z-P;
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[1]=C*T[1];
A[0]=C*T[0]+A[0];
}
for(j=2;j
S[j]=T[j-1];
S[j-1]=-P*T[j-1]+T[j-2];
if(j>=3)
{
for(k=j-2;k>=1;k--)
S[k]=-P*T[k]+T[k-1]-Q*B[k];
}
S[0]=-P*T[0]-Q*B[0];
D2=0;
C=0;
G=0;
for(i=0;i
Q=S[j];
for(k=j-1;k>=0;k--)
Q=Q*(Xval[i]-Z)+S[k];
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[j]=C*S[j];
T[j]=S[j];
for(k=j-1;k>=0;k--)
{
A[k]=C*S[k]+A[k];
B[k]=T[k];
T[k]=S[k];
}
}
return TRUE;
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28