京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据或是物联网核心_数据分析师
物联网确实是在高速发展,但赚到的钱既不来自于网也不来自于物,而是通过物联网获取的数据进行商业服务获利。不幸的是,因为缺乏物联网基础设施,行业发展缓慢,供应商们被逼无奈构建基础设备、传感器网络和最顶端运行的服务器。
不同的传感器不同的标准
据高德纳咨询公司透露,至2020年,物联网的设备将会激增到260亿台。如果我们算上智能手机和平板的话,设备数量则高达330亿。这些小设备中蕴含着巨大商机:高德纳公司的物联网项目将会通过全球经济增值获得1.9万亿美元的营收。
问题是怎么让物联网市场再扩大呢?按照科技发展的一般思路想,答案应该是基础设施了。物联网现在有基础设施——但是基础设施太多了,说实话和根本没有的性质是一样的。
现在行业缺乏标准也不能怪到贪婪的供应商身上,毕竟他们是商人,希望挡住竞争对手,留住顾客。在最近一次麻省理工学院会议上,ARM公司 BillCurtis提到“因为现行的大多数网络标准对物联网设备建设来说都太复杂,所以这些设备都像直接运行专有协议,创建数据库。”换句话说,专有协 议本身并不是目的,而是达成目标的手段(让传感器网络中的个体相互沟通,从而提供商业服务)。
很遗憾,关于网络标准这个复杂的问题至今没有得到改善。相关人士表示“现在的公司都在为物联网孤军奋战,独自研究。不像早期互联网的发展,军事和大学研究中心都为同一个问题齐心协力,这样技术问题能得到更好的解决和统一。”现在还无法强制要求公司一起合作,不过这种情况可能会出现大的改变。
服务,而不是传感器
高德纳公司预计物联网供应商在2020年时最高可以获得3090亿美元的直接营收,而这些赚到的钱大多是来自于提供的服务。像博世这样的公司现在正在构建类似车队管理的服务,他们表示真正赚钱的是服务,而不是传感器或是设备。
有钱赚的地方就会有标准。不过这标准很有可能最后还是供应商自己制定的,就像AllSeenAlliance(全球众多消费电子公司和技术公司组成了的一 个技术联盟,以便实现家庭、医疗、汽车、教育等行业的跨设备互联)一样。举个例子,博世在建基于自家传感器的服务设施,同样需要竞争传感器厂商的帮忙。这也是公司为什么要花那么多时间谈商业模式,而不是只谈机器。
没有哪家硬件公司可以只依赖于自己生产的传感器。即使是像苹果这样成功的硬件公司也不能避免,最后还是让步于谷歌Android系统这样开放、基于服务的平台。其实就物联网而言,我们还处于市场早期阶段。如果按照ClaytonChristensen教授提出的市场发展理论来看,垂直整合的传感器和商业服 务将会主导物联网行业,但这绝不是物联网最后的发展状态。随着传感器的数量激增,传感器所遵循的标准都各不一样,服务供应商将会抓取和应用不同的数据,并尽力制定标准,以确保选取的数据可以使用。
现在要考虑的问题是硬件厂商是否会足够愿意努力推动标准化以便他们可以利用服务赚钱。把自己定位为纯硬件生产商的公司百分之八十是会失败的,而那些有长远考虑,不只是专注于网络服务的公司未来前景很光明。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07