京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【数据看球】2018 年世界杯夺冠预测,CDA带你用机器学习来分析
随着2018年FIFA世界杯开赛在即,世界各地的球迷都渴望知道:谁将夺取梦寐以求的冠军奖杯?
如果你不仅是一名资深球迷,而且还是技术宅,那么你还可以利用机器学习和人工智能这两个利器。下面让我们一起预测哪个国家会赢得本次世界杯。
足球比赛涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨。这只是我作为技术宅,从数据角度的尝试。
目标
1. 目标是使用机器学习预测谁将赢得2018年世界杯。
2. 预测世界杯中每场比赛的结果。
3. 对下场比赛进行模拟预测,比如四分之一决赛,半决赛和决赛。
这些目标体现了现实世界中的机器学习预测问题,当中涉及的机器学习任务包括:数据整合,特征建模和结果预测。
数据
我使用了Kaggle的两个数据集,包括自1930年起所有参赛队在国际比赛中的结果。
Kaggle数据集链接:
(https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/data)
局限性:
由于国际足联排名创建于90年代,因此缺乏大部分数据集。在此我们按照历史比赛记录分析。
环境和工具:
jupyter notebook,numpy,pandas,seaborn,matplotlib和scikit-learn。
我们首先要对两个数据集进行探索性分析,通过特征工程选择最相关的特征进行预测。之后进行数据处理,选择机器学习模型,最后将其部署到数据集上。
开始
首先,导入必要的库并将数据集加载到数据框。
导入库
加载数据集
通过调用两个数据集world_cup.head()和results.head(),确保数据集加载到数据框中,如下所示:
探索性分析:
对两个数据集进行分析后,所得数据集包含过去比赛的数据。新产生的数据集对分析和预测之后的比赛很有用。
在数据科学项目中,确定哪些特征与机器学习模型相关是最耗时的部分。
现在,让我们在结果数据集中添加净胜球数和结果列。
查看新的结果数据框。
然后我们将使用数据的子集。其中包括只有尼日利亚参加的比赛。这将有助于我们了解某支球队的特色,并拓展运用到其他参赛球队。
第一届世界杯于1930年举办。创建年份列,选择1930年以后的所有比赛。
现在可以将这些年尼日利亚的比赛结果进行可视化。
每个世界杯参赛球队的获胜率是很有用的指标,我们可以用它来预测每场比赛的结果。其中比赛场地并不重要。
参赛球队
对所有参赛球队创建数据框。
然后进一步过滤数据框,只显示从1930年起到今年世界杯的球队,减少重复的球队。
创建年份列,并删除1930年之前的比赛,以及不影响比赛结果的列,例如日期、主队进球数、客队进球数、锦标赛、城市、国家、净胜球数和比赛年份。
修改“Y”(预测标签)以简化模型处理。
如果主队获胜,获胜队(winner_team)列将显示“2”,如果是平局则显示“1”,如果客队获胜则显示“0”。
通过设置虚拟变量,将主队(home_team)和客队(away _team)从分类变量转换为连续输入。
使用 pandas,get_dummies()函数。从而用one-hot(数字“1”和“0”)代替分类列,确保加载到Scikit-learn模式。
然后,我们将X和Y集分开,并将数据的70%用于训练,30%用于测试。
我们将使用逻辑回归。通过逻辑函数估计概率,我可以测量分类因变量和一个或多个自变量之间的关系。
换句话说,逻辑回归通过影响结果的数据点(统计数据)对结果进行预测(赢或输)。
在实际运用中,每次对一场比赛输入算法,同时提供上述“数据集”和比赛的实际结果。然后,模型将学习输入数据将如何对比赛结果产生积极或消极影响。
让我们看到最终数据框:
看起来很棒。现在加入算法:
我们的模型在训练集上的准确率为57%,测试集的准确率为55%。这并不理想,但让我们继续。
现在我们将创建数据框部署模型。
首先,我们将加载截至到2018年4月的国际足联排名数据集和小组赛阶段的数据集。
国际足联排名:
(https://us.soccerway.com/teams/rankings/fifa/?ICID=TN_03_05_01)
小组赛阶段数据:
(https://fixturedownload.com/results/fifa-world-cup-2018)
国际足联排名较高的球队将被视为“受欢迎”球队。由于世界杯中不分“主队”或“客队”球队,他们都将归属到“home_teams”列。然后,根据每个团队的排名将球队添加到新的预测数据集中。下一步将创建虚拟变量并部署机器学习模型。
预测比赛
你肯定在想什么时候才能到预测部分。前面代码和解释占据了太多的篇幅,现在我们开始预测。
将模型部署到数据集
首先将模型部署到小组赛。
下面是小组赛的结果。
该模型预测了三场平局,并预测西班牙有很高的胜率。我用这个网站预测了小组赛。
(https://ultra.zone/2018-FIFA-World-Cup-Group-Stage)
16强
以下是对16强的预测。
四分之一决赛
四分之一决赛的情况为:
葡萄牙vs法国,巴西vs英格兰,西班牙vs阿根廷,德国vs比利时。
预测结果:
半决赛
葡萄牙vs巴西;德国vs阿根廷
预测结果:
决赛
巴西vs德国
预测结果:巴西获胜。
根据模型预测,巴西很可能赢得本次世界杯。
结语
研究和改进空间:
1.数据集。为了改进数据集,你可以使用国际足联数据来评估球队中每个球员的水平。
2.混淆矩阵能够用于分析模型分析错误的情况。
3.我们可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26