
有了这个作为基础我们可以开始谈引擎核心结构的演变。我觉得大数据引擎的分析技术有三项。一项是执行模型和结构的技术。第二个系统软件的技术。第三是引擎的编程模型和优化技术,这三项相辅相成缺一不可的,做HPC的这群人都有过痛苦的经验和深刻的教训,这三方向的发展,在大数据引擎上面这三项也是非常重要的。我今天主要的是Execution Model,执行模型定义的一个API,叫做Execution Model API,然后你发展使得这个模型的定义双方有一个无缝连接,使得它能够达到你所需要的目的。最新的观点在这个上面,是这个Execution Model不仅仅影响这一层API,它同时也影响其他层之间的关系。所以这个事情非常重要,什么是Execution Model?比如说1948年总结的,那个Execution Model活这么多年,所有我们的接口,所有我们串型运算的接口在软件方面硬件方面这么长,我们一直试图整个的领域把成功经验用到并行操作和并行系统的执行模型,很可惜到今天仍没有成功。它的data不仅是程序自身产生的和程序自身确定的静态确定的这些数据,而是需要有动态的数据,什么叫做动态数据?比如所有传感器来的数据。你把问题表现成数学模型化然后编程而是要考虑这些大量随机的事务,Execution Model接入的数据,使这两种数据都可以使你系统里面无缝的结合起来。数据流的Execution Model没有这个旧年,数据里面甭管是可抗性的还是不可抗性,没有想象有一个温度的不可抗性,这个依赖关系没有办法表述。原来1970,1971年,1972年,1980年,这里面证明了Execution Model一致性完整性所有这些都需要重新的考验。我的意思就是说这个事情不能忘记,我们做大规模的处理历史经验非常重要。
什么叫做创新?创新意味着人类积累起来的知识不要忘记,在新环境下怎么让它适应Execution Model这是很重要一部分的创新。我们计算机系统领域有很大矛盾,我们常常非常容易的忘记过去,不是故意的,是事太多了,每年都在追,看看明年有什么,我赶快追,没有这个时间。
下面我用一个动画说明下Execution Model,在执行实现的时候误区在哪?这个误区就是把OS的作用给误解了,我的老师就是OS发起人之一很有名,他去年得最大的奖,他两个贡献,数据流是第二项,第一项是他在操作系统上做的贡献。这个动画就是Mechine Runtime Syelem。这个不是那个Runtime Syelem,这个有很多机器模型实现它,硬件跟Execution Model之间总会有一些坑坑洼洼不齐的地方。比如说你要求某一项操作在你Execution Model上,但是它硬件上,它的指令系统上,或者它系统结构没有直接反馈它,这时候你要做一层软件,它的任务就是补漏洞。这一层软件跟OS没有关系,最大的错误就是让OS执行这套软件。如果你注意最近这三年,美国主要的研究,都是强调Runtime Syelem和OS的关系,Runtime Syelem就是Execution Model跟OS的关系。并不是说OS没有用,但是它的任务是跟Runtime的分工。
系统软件上面并行多核,打破了传统OS控制打破了OS控制一体现象,支持高性能高扩展低能耗,弹性,面临空间的根本性的挑战。第三项有了这个系统,有了结构,当然你有编程模型和优化技术,我只想强调当前优化技术集中在静态优化方法,我们编程模型和优化技术都是假定,所有的都要用芯片来做,优化也是在这上面做。包括我自己的Execution Model做的一些工作都是假定硬件上有芯片,但是都是很小的规模,现在就是最重要的就是有动态调度,有并发多元管理在RUNTIME这里。李永辉教授今天上午的讲话,他第一条我听清楚了就是说即使在英特网上细颗粒度的监控,使得整体的计划变成动态的虚拟化,这个实际上跟那个是一回事,自调整都是建立在这个基础上,程序自己监控自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23