
知识产权:大数据时代的机遇与挑战
以史为鉴,可以知兴替。”如果说从浩瀚的历史中总结出可借鉴的得失之道只有部分伟人可以做到,那么大数据的应用则可以让历史经验这面镜子飞入寻常百姓家。投资人会为我的技术秘密出多少钱?谁拥有我需要的专利?什么样的商标价值更高?什么条件下知识产权诉讼胜诉率更高?在5月29日闭幕的中国国际大数据产业博览会(下称数博会)上,一组组成功的大数据应用实例向与会者展示了大数据从浩如烟海的信息中拎出“干货”、给使用者以指导借鉴的强大力量。如何保护大数据的知识产权也成为大家热议的话题。
大数据指明知识产权保护路径
“不同于互联网时代的数据储存和数据传输,大数据时代的大数据以数据的深度挖掘和数据的广泛应用为主要目的。这给知识产权保护带来了新的机遇。”在数博会的大数据与知识产权保护论坛上,中华商标协会会长兼秘书长马夫指出,通过大数据分析寻找侵权规律,追踪和定位问题源头,为相关政府部门和企业实现为不同侵权行为逐步升级的有效布控和打击,提供了可靠的路径;同时大数据不仅使知识产权检索更加便捷精准,而且还将在知识产权价值评估中得到广泛应用。
“从大数据统计结果来看,改革开放40年来,我国法院受理的知识产权案件的规模和结构,是与我国经济社会发展的趋势相吻合的。”论坛上,北京知识产权法院法官杨静结合数据,向与会嘉宾分享了我国知识产权保护的发展趋势。“深度数据挖掘对我们而言是重要的参考材料,大数据甚至比我们自己还了解我们。每次阅读大数据分析材料,都让我们能迅速直观地发现问题,促进工作不断改进。”杨静指出,数据分析显示,我国知识产权案件面临总量剧增、新类型层出不穷、涉外案件比例扩大等挑战。比对分析结果,北京知识产权法院有针对性地采取解决措施,如增加技术调查官,开展多元化纠纷解决,对新类型案件开展针对性研究,结合数据科学化、精细化确定侵权赔偿额等。“通过大数据分析,我们推行符合知识产权诉讼规律的裁判方式改革,探索确定真正体现知识产权价值的侵权损害赔偿额,提升司法审判效率,优化纠纷解决效果。”杨静对大数据在知识产权案件审判中的借鉴指导作用予以高度肯定。
“大数据的应用,不能只求大求广,一定要把大数据和具体的应用以及特定的行业结合起来才有价值。”北京知产宝网络科技发展有限公司首席执行官普翔表示,零散的庞大信息没有使用意义,只有将信息体系化、结构化,才是真正有作用、可以指导实践的大数据。“从数据到信息,从信息到知识,从知识到指挥行动,这是我们所追求的大数据应用。”他表示。
大数据呼唤知识产权保护“身份”
“如果我们只产生、应用大数据,不对其本身的知识产权加以保护的话,就相当于‘裸奔’了。”在讲解公司如何进行大数据运营时,普翔提出,大数据本身具有很强的创造性和实用性,这些特点与专利等知识产权有共通之处。
“大数据不仅仅是海量数据的集合,更重要的是对数据集合进行采集、存储、关联分析。”贵州省高级人民法院知识产权庭法官白帆指出,大数据实际上具有典型的无形财产的特征,形成大数据需要付出大量劳动,其结果具有很高价值,是典型的知识产权,应当依法受到保护。
然而,大数据本身不同于专利、商标、版权等知识产权的特点,其究竟应当以何种形式受到保护,仍是学界争议的问题。白帆指出,同样是大数据,抓取采集的数据汇集、机器分析的数据处理、以报告形式表达的分析结果等,虽是大数据形成的不同阶段,但由于手段的不同,其知识产权的权利特点也不尽相同,不能以着作权一概而论。
“数据权利有没有可能像欧盟一样作为一种特殊权利保护起来?这是立法者、法官、律师以及全社会都必须参与的问题。”贵州财经大学大数据法律与政策研究院院长刘云飞深入分析了多件大数据以商标、版权、商业秘密等知识产权“身份”作为诉讼标的的案例,指出当前无论是商标、版权还是商业秘密等保护方式,都不能完全适用于大数据的保护,应当抓紧完善立法,保护大数据的知识产权价值。
“大数据产业的发展正在给相关法律制度提出诸多挑战,我们必须从传统的数据观念很快地过度到规范的法律意识。”武汉大学知识产权与竞争法研究所所长宁立志认为,对大数据特别是海量的跨国流动的大数据进行产权界定非常困难,在传统民法中难以找到准确的对应法条,需要对民法中的基本概念进行调整。宁立志还指出,让大数据进入规范化的法律框架,不只是法律的任务,“法律、经济和管理应该共同作用,才能做好这个课题。”宁立志表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01