京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言混合型数据聚类分析案例
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量、名义型变量和顺序型变量的数据)。本文将利用 Gower 距离、PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析。
本文主要分为三个部分:
距离计算
聚类算法的选择
聚类个数的选择
为了介绍方便,本文直接使用 ISLR 包中的 College 数据集。该数据集包含了自 1995 年以来美国大学的 777 条数据,其中主要有以下几个变量:
连续型变量
录取率
学费
新生数量
分类型变量
公立或私立院校
是否为高水平院校,即所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50%
本文中涉及到的R包有:
In [3]:
set.seed(1680) # 设置随机种子,使得本文结果具有可重现性
library(dplyr)
library(ISLR)
library(cluster)
library(Rtsne)
library(ggplot2)
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
构建聚类模型之前,我们需要做一些数据清洗工作:
录取率等于录取人数除以总申请人数
判断某个学校是否为高水平院校,需要根据该学校的所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50% 来决定
In [5]:
college_clean <- College %>%
mutate(name = row.names(.),
accept_rate = Accept/Apps,
isElite = cut(Top10perc,
breaks = c(0, 50, 100),
labels = c("Not Elite", "Elite"),
include.lowest = TRUE)) %>%
mutate(isElite = factor(isElite)) %>%
select(name, accept_rate, Outstate, Enroll,
Grad.Rate, Private, isElite)
glimpse(college_clean)
Observations: 777
Variables: 7
$ name (chr) "Abilene Christian University", "Adelphi University", "...
$ accept_rate (dbl) 0.7421687, 0.8801464, 0.7682073, 0.8369305, 0.7564767, ...
$ Outstate (dbl) 7440, 12280, 11250, 12960, 7560, 13500, 13290, 13868, 1...
$ Enroll (dbl) 721, 512, 336, 137, 55, 158, 103, 489, 227, 172, 472, 4...
$ Grad.Rate (dbl) 60, 56, 54, 59, 15, 55, 63, 73, 80, 52, 73, 76, 74, 68,...
$ Private (fctr) Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...
$ isElite (fctr) Not Elite, Not Elite, Not Elite, Elite, Not Elite, Not...
距离计算
聚类分析的第一步是定义样本之间距离的度量方法,最常用的距离度量方法是欧式距离。然而欧氏距离只适用于连续型变量,所以本文将采用另外一种距离度量方法—— Gower 距离。
Gower 距离
Gower 距离的定义非常简单。首先每个类型的变量都有特殊的距离度量方法,而且该方法会将变量标准化到[0,1]之间。接下来,利用加权线性组合的方法来计算最终的距离矩阵。不同类型变量的计算方法如下所示:
连续型变量:利用归一化的曼哈顿距离
顺序型变量:首先将变量按顺序排列,然后利用经过特殊调整的曼哈顿距离
名义型变量:首先将包含 k 个类别的变量转换成 k 个 0-1 变量,然后利用 Dice 系数做进一步的计算
优点:通俗易懂且计算方便
缺点:非常容易受无标准化的连续型变量异常值影响,所以数据转换过程必不可少;该方法需要耗费较大的内存
利用 daisy 函数,我们只需要一行代码就可以计算出 Gower 距离。需要注意的是,由于新生入学人数是右偏变量,我们需要对其做对数转换。daisy 函数内置了对数转换的功能,你可以调用帮助文档来获取更多的参数说明。
In [6]:
# Remove college name before clustering
gower_dist <- daisy(college_clean[, -1],
metric = "gower",
type = list(logratio = 3))
# Check attributes to ensure the correct methods are being used
# (I = interval, N = nominal)
# Note that despite logratio being called,
# the type remains coded as "I"
summary(gower_dist)
Out[6]:
301476 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0018601 0.1034400 0.2358700 0.2314500 0.3271400 0.7773500
Metric : mixed ; Types = I, I, I, I, N, N
Number of objects : 777
此外,我们可以通过观察最相似和最不相似的样本来判断该度量方法的合理性。本案例中,圣托马斯大学和约翰卡罗尔大学最相似,而俄克拉荷马科技和艺术大学和哈佛大学差异最大。
In [7]:
gower_mat <- as.matrix(gower_dist)
# Output most similar pair
college_clean[
which(gower_mat == min(gower_mat[gower_mat != min(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[7]:
In [8]:
# Output most dissimilar pair
college_clean[
which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[8]:
聚类算法的选择
现在我们已经计算好样本间的距离矩阵,接下来需要选择一个合适的聚类算法,本文采用 PAM(partioniong around medoids)算法来构建模型:
PAM 算法的主要步骤:
随机选择 k 个数据点,并将其设为簇中心点
遍历所有样本点,并将样本点归入最近的簇中
对每个簇而言,找出与簇内其他点距离之和最小的点,并将其设为新的簇中心点
重复第2步,直到收敛
该算法和 K-means 算法非常相似。事实上,除了中心点的计算方法不同外,其他步骤都完全一致 。
优点:简单易懂且不易受异常值所影响
缺点:算法时间复杂度为 O(n2)O(n2)
聚类个数的选择
我们将利用轮廓系数来确定最佳的聚类个数,轮廓系数是一个用于衡量聚类离散度的内部指标,该指标的取值范围是[-1,1],其数值越大越好。通过比较不同聚类个数下轮廓系数的大小,我们可以看出当聚类个数为 3 时,聚类效果最好。
In [9]:
# Calculate silhouette width for many k using PAM
sil_width <- c(NA)
for(i in 2:10){
pam_fit <- pam(gower_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:10, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:10, sil_width)
聚类结果解释
描述统计量
聚类完毕后,我们可以调用 summary 函数来查看每个簇的汇总信息。从这些汇总信息中我们可以看出:簇1主要是中等学费且学生规模较小的私立非顶尖院校,簇2主要是高收费、低录取率且高毕业率的私立顶尖院校,而簇3则是低学费、低毕业率且学生规模较大的公立非顶尖院校。
In [18]:
pam_fit <- pam(gower_dist, diss = TRUE, k = 3)
pam_results <- college_clean %>%
dplyr::select(-name) %>%
mutate(cluster = pam_fit$clustering) %>%
group_by(cluster) %>%
do(the_summary = summary(.))
print(pam_results$the_summary)
[[1]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3283 Min. : 2340 Min. : 35.0 Min. : 15.00 No : 0
1st Qu.:0.7225 1st Qu.: 8842 1st Qu.: 194.8 1st Qu.: 56.00 Yes:500
Median :0.8004 Median :10905 Median : 308.0 Median : 67.50
Mean :0.7820 Mean :11200 Mean : 418.6 Mean : 66.97
3rd Qu.:0.8581 3rd Qu.:13240 3rd Qu.: 484.8 3rd Qu.: 78.25
Max. :1.0000 Max. :21700 Max. :4615.0 Max. :118.00
isElite cluster
Not Elite:500 Min. :1
Elite : 0 1st Qu.:1
Median :1
Mean :1
3rd Qu.:1
Max. :1
[[2]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.1545 Min. : 5224 Min. : 137.0 Min. : 54.00 No : 4
1st Qu.:0.4135 1st Qu.:13850 1st Qu.: 391.0 1st Qu.: 77.00 Yes:65
Median :0.5329 Median :17238 Median : 601.0 Median : 89.00
Mean :0.5392 Mean :16225 Mean : 882.5 Mean : 84.78
3rd Qu.:0.6988 3rd Qu.:18590 3rd Qu.:1191.0 3rd Qu.: 94.00
Max. :0.9605 Max. :20100 Max. :4893.0 Max. :100.00
isElite cluster
Not Elite: 0 Min. :2
Elite :69 1st Qu.:2
Median :2
Mean :2
3rd Qu.:2
Max. :2
[[3]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3746 Min. : 2580 Min. : 153 Min. : 10.00 No :208
1st Qu.:0.6423 1st Qu.: 5295 1st Qu.: 694 1st Qu.: 46.00 Yes: 0
Median :0.7458 Median : 6598 Median :1302 Median : 54.50
Mean :0.7315 Mean : 6698 Mean :1615 Mean : 55.42
3rd Qu.:0.8368 3rd Qu.: 7748 3rd Qu.:2184 3rd Qu.: 65.00
Max. :1.0000 Max. :15516 Max. :6392 Max. :100.00
isElite cluster
Not Elite:199 Min. :3
Elite : 9 1st Qu.:3
Median :3
Mean :3
3rd Qu.:3
Max. :3
PAM 算法的另一个优点是各个簇的中心点是实际的样本点。从聚类结果中我们可以看出,圣弗朗西斯大学是簇1 的中心点,巴朗德学院是簇2 的中心点,而密歇根州州立大学河谷大学是簇3 的中心点。
In [19]:
college_clean[pam_fit$medoids, ]
Out[19]:
可视化方法
t-SNE 是一种降维方法,它可以在保留聚类结构的前提下,将多维信息压缩到二维或三维空间中。借助t-SNE我们可以将 PAM 算法的聚类结果绘制出来,有趣的是私立顶尖院校和公立非顶尖院校这两个簇中间存在一个小聚类簇。
In [22]:
tsne_obj <- Rtsne(gower_dist, is_distance = TRUE)
tsne_data <- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering),
name = college_clean$name)
ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
进一步探究可以发现,这一小簇主要包含一些竞争力较强的公立院校,比如弗吉尼亚大学和加州大学伯克利分校。虽然无法通过轮廓系数指标来证明多分一类是合理的,但是这 13 所院校的确显著不同于其他三个簇的院校。
In [25]:
tsne_data %>%
filter(X > 15 & X < 25,
Y > -15 & Y < -10) %>%
left_join(college_clean, by = "name") %>%
collect %>%
.[["name"]]
Out[25]:
‘Kansas State University’
‘North Carolina State University at Raleigh’
‘Pennsylvania State Univ. Main Campus’
‘SUNY at Buffalo’
‘Texas A&M Univ. at College Station’
‘University of Georgia’
‘University of Kansas’
‘University of Maryland at College Park’
‘University of Minnesota Twin Cities’
‘University of Missouri at Columbia’
‘University of Tennessee at Knoxville’
‘University of Texas at Austin’
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20