京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言解析JSON格式数据文件
由于分析的数据格式为JSON格式,既占空间,而且分析时也非常的不方便,所以,我们需要对JSON格式
的数据进行解析,使其符合R语言分析所需要的数据格式,如data.frame,list等。
在R语言的包库中,已经有人对JSON格式的解析做了完整的包jsonlite,这极大地减轻了分析人员的工作压力。
jsonlite包中有以下几个函数
1、flatten
其中flatten函数是用来处理JSON中含有内嵌表格的情况,这种JSON文件解析为data.frame时,会在data.frame中
的某一列或多个列中另外包含一个data.frame。flatten函数可以将这种data.frame转换为一个2维的列表结构。通俗
点讲,就是讲内嵌表格的属性作为外置大表格的属性,组成一个维数变大了的表格。例如
上图的x表格,stats为一个内嵌表格,具有3个属性。
经过flatten(x)函数转化后,变为一个表格
2、prettify,minify
prettify是一个美化函数,对json密集的json格式,通过增加空白,对格式进行标准化,这样我们在观察json数据时会比较方便。
例如:
minify是一个压缩函数,与prettify做的事情正好相反,其效果如下
这两个函数使用都非常简单,仅需要一个JSON对象即可,可以从toJSON函数获得
3、rbind.pages
这是一个合并函数,根据官方文档的说法,它可以将多个data.frame合并为1个data.frame。
这个函数非常只能,可以自动识别多个data.frame的属性是否相同,若相同,则按行合并,若不同,则将相同的地方按行合并,不同的属性按列合并
例如:
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), bar = c("blue", "red"))
rbind.pages(list(x, y))
直接按行合并了。
x <- data.frame(foo = rnorm(3), bar = c(TRUE, FALSE, TRUE))
y <- data.frame(foo = rnorm(2), col = c("blue", "red"))
rbind.pages(list(x, y))
对foo按行合并了,而col属性是按照列合并的,没有的部分用NA代替。
4、serializeJSON
将一个R的对象序列化为一个JSON数据集。
5、stream_in,stream_out
利用流文件来处理JSON格式的数据解析任务。这种方法可以针对数据量非常大的情况。
stream_in(con, handler, pagesize = 500, verbose = TRUE, ...)
其中con为一个连接对象,可以是一个网络ur,也可以是一个文件路径
handler是一个自定义函数,pagesize用来指定我们从文件中要读取的文件行数。
verbose=T,设置是否打印出处理行数
stream_out(x, con = stdout(), pagesize = 500, verbose = TRUE, ...)
x为一个需要输出为json数据集的对象,目前只支持data.frame
5、toJSON,fromJSON
与stream_in和stream_out的功能类似,toJSON是转化为JSON格式,fromJSON是将JSON格式数据集转化为
R中的格式,一般为list.
具体使用方法可以查帮助文档。
其中fromJSON在读取多行JSON数据时会报错,只能单行读取数据。
总结
进行JSON格式数据解析时,没有特殊要求,建议使用stream_in函数。如果希望按照自己的想法来解析,可以使用fromJSON
按行解析,然后对字符串按照自己的想法处理,如加密,解密等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23