
如何理解数据虚拟化的不同形式
实际上,数据虚拟化有许多不同的形式。虽然一些形式比其他的形式更有用,但对于不熟悉这些选择的人来说,他们都会面临同样的困惑。
1.数据混合
大多数现代商业智能包都包含某种形式的数据混合。简单来说,数据混合描述了来自两个或多个源的信息合并为一个有用数据的恒定流的过程。
但重要的是要了解过程之间的差异,如数据混合和数据集成。人们经常会将这二者混淆,特别是SQL查询编程,但是它们描述了不同的过程。传统的数据集成(也称为提取、转换和加载过程)是一种非常标准化的方法。数据混合是一个为现代数据分析人员提供更大的灵活性和可定制性的过程。
与其他形式的虚拟化和数据收集相比,典型的数据混合过程相对快速和高效。当许多不同的数据源发挥作用时会出现并发问题,但推出的下一代软件使其工作变得更加容易。一些最流行的数据混合工具包括以下内容:
Tableau:总部位于华盛顿州西雅图的Tableau软件公司使用高度互动的下一代数据可视化技术来提供翔实和可操作的商业智能。他们的软件在大规模数据混合操作中很常见。
Alteryx Designer:专注于为当今的数据分析师提供全面的解决方案,Alteryx Designer经常用于数据混合、数据准备和统计分析,以在竞争中发现新的见解和趋势。
Datawatch Monarch:Monarch专门从事数据采集,准备,管理和整理,这是一组统称为数据清理的过程。商业世界中一些最着名的公司使用Datawatch的软件,包括摩根大通、施乐、Equifax等等。
而有兴趣进行数据混合的企业还有很多。
2.数据服务模块
数据服务模块通常包含在数据仓库合同中。因此,许多不同的模块可用于公共消费。例如,Bing空间数据服务模块可以轻松上传数据,以便在依赖Bing地图服务的基于云计算的应用程序中使用。用户可以选择将其数据源标记为公开,以允许任何人使用适当的密钥进行访问。
3.SQL功能
单一查询语言(或SQL)是用于高级和高度复杂数据库结构的编程语言,但它在数据虚拟化中也占有一席之地。通过对现代大数据技术进行虚拟化,就像从Hadoop供应商那里看到的那样,它们可以与SQL文件或文件夹相结合,并通过标准SQL查询。
上面链接中给出的示例演示了如何使用Angular JS为API创建可重用数据服务模块,但是数据虚拟化以多种方式受益于SQL编程,其中包括:
简单直接地访问几乎任何形式的数据的能力。
针对跨多个系统存在的较大数据集启用查询,从而无需将它们重新定位到可能有或没有足够可用磁盘空间的单个系统。
直接和无缝地访问存在于不同系统或组织不同部门的数据集和数据源。
与云计算和大多数数据中心环境完全集成,其中包括企业级环境。
将更大的计算需求(如非常大的数据集)卸载到功能更强大的外部系统。在此过程中保持无缝进行至关重要。
SQL是一种多功能编程语言,为那些在数据库结构或数据虚拟化项目中使用SQL的人提供了许多好处。
4.云数据服务
虽然本地数据库仍然很流行,尤其是在数据虚拟化方面,基于云计算的系统获得一定的发展势头。尽管它们不代表真正的数据虚拟化,但云计算数据服务通常以软件即服务包的形式出现,以实现许多相同的目标,所有这些都在下一代云中实现。其中一些主要目标包括:
为客户提供各种不同的分析服务。
保持与各种云平台的兼容性。
使用开源编程来促进新的和一致的开发。
提供既经济又安全的平台。
由于云计算服务在五年或十年前尚未广泛推出,它们有可能改变人们所知道的数据虚拟化的整个范围。只有时间才能证明真正的影响,但行业专家已经对云计算及其所提供的一切寄予厚望。
5.数据虚拟化平台
定制的数据虚拟化平台也是可用的。思科公司的IT团队最近设计了一个数据虚拟化软件套件,旨在降低IT成本,加强信息可访问性,并加强数据完整性。拥有超过400个数据库和大约3000个应用程序以及超过50
PB容量的数据存储需求,这是一个巨大的升级,将显着改变他们的业务方式。
克服困惑,选择正确的途径
许多人对数据虚拟化有一些误解,但这并不是因为缺乏尝试。有了如今许多不同形式的数据虚拟化,以及与设备或驱动器虚拟化等其他策略相比差异显着,新手和专家们常常会感到困惑。
了解这些差异不仅使企业更容易选择最适合自己的方法,而且最终还可以为企业节省大量费用,并减少挫折。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23