
利用R语言编写量化投资策略
选取一股票,利用R语言进行分析,同时构建通道突破,双均线交叉和MACD策略,进行回测。
library(xts)
library(xtsExtra)
library(quantmod)
library(FinTS)
library(forecast)
library(TSA)
library(TTR)
library(fGarch)
library(rugarch)
library(tseries)
setSymbolLookup(MHXX=list(name='0696.hk',src='yahoo'))
getSymbols("MHXX",from="2013-01-01",to="2015-09-30")
#显示K线图,如图明显发现股价呈现递增趋势,价格序列是非平稳的。
chartSeries(MHXX)
#考虑对数收益率
#获取收盘价
cp = MHXX[,4]
lgcp=log(MHXX[,4])
#tdx =c(1:456)/365+2014
#计算日收益率
ret=dailyReturn(MHXX)
chartSeries(ret,theme="white",TA=NULL)
#plot(tdx,cp,xlab="year",ylab="close price",type='l')
#计算对数收益率,如图课件,股价在15年左右有一个跳跃,15年第二季度的股价增长导致
#之后股价有较大的下降,这些特征给后续的分析带来一些较大的异常值
lgret = log(ret+1)
chartSeries(lgret,theme="white",TA=NULL)
#由ACF和PACF图可以看出,该股1股价的日收益率序列即使存在某种相关性,该自相关性也
#很小
par(mfcol=c(2,1))
acf(lgret,lag=30)
pacf(lgret,lag=30)
#为了验证该收益率序列有没有序列相关性,使用Ljung-Box检验,结果对应的P值0.024,
#在1%的显著水平下,拒绝该股票日收益率没有显著前后相关性的这一原假设。
#但在5%的显著水平下,无法拒绝该股票日收益率没有显著前后相关性的这一原假设。
Box.test(lgret,lag=20,type='Ljung')
##############################################################################
m1 <- auto.arima(lgret,stationary=TRUE,seasonal=FALSE,ic="aic")
#鉴于该股票对数收益率序列的自相关性并不强,所以建立的ARIMA模型可能适用性不高。
#对于对数收益率序列,单样本的t检验结果的t比为1.0625,p值为0.2884,表明该序列不是
#显著异于零的,同时此处根据ACF图所示,在4阶有轻微的超越标准差线,
#因此取用AR(5)模型拟合,aic=-2987.43
m2 <- arima(x=lgret,order=c(4,0,0),include.mean=F)
tratio=m2$coef/sqrt(diag(m2$var.coef))
tratio
meacf=eacf(lgret,6,12)
print(meacf$eacf,digits=2)
#残差检验并表示改模型可能不是充分的
tsdiag(m2,gof=20)
m3 <-auto.arima(ret,stationary = TRUE,seasonal = FALSE,ic="aic")
m3
################################################################################
#由上述可知,对于价格变化的分析,纯ARMA模型是不充分的,一方面ARMA模型不能处理
#波动率聚集,另一方面,ARMA-GARCH模型能充分处理这些数据的复杂性,
#并能提高样本外预测
price=ts(cp)
dp=ts(diff(cp))
par(mfcol=c(2,1))
plot(price,xlab='year',ylab='price')
plot(dp,xlab='year',ylab='changes')
cprice=diff(price)
par(mfcol=c(2,1))
acf(cprice)
pacf(cprice)
#aic=-0.37
m.garch1<-garchFit(~1+garch(1,1),data=cprice,trace=F)
summary(m.garch1)
#aic=-0.62
m.garch2<-garchFit(~arma(6,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch2)
#aic=-0.60
m.garch3<-garchFit(~arma(2,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch3)
#aic=-0.596
m.garch4<-garchFit(~arma(1,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch4)
#回测检验
source("backtestGarch.R")
M2F=backtestGarch(cprice,714,2,inc.mean=F,cdist="sstd")
source("backtest.R")
M2AF=backtest(m2,cprice,714,2,inc.mean=F)
#ArchTest(coredata(ret))
################################################################################
#计算VaR
mgarch1<-ugarchspec(variance.model=list(garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0)))
mgarch1_fit<-ugarchfit(spec=mgarch1,data=cprice)
mgarch1_fit
mgarch1_roll<-ugarchroll(mgarch1,cprice,n.start=120,refit.every=1,
refit.window = "moving",solver="hybrid",
calculate.VaR = TRUE,VaR.alpha = 0.01,keep.coef = TRUE)
report(mgarch1_roll,type="VaR",VaR.alpha=0.01,conf.level=0.99)
#生成PLOT
cprice_var<-zoo(mgarch1_roll@forecast$VaR[,1])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
cprice_actual<-zoo(mgarch1_roll@forecast$VaR[,2])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
plot(cprice_actual,type="b",main="99% day Var backtesting",xlab="Date",
ylab="Return /VaR in percent")
lines(cprice_var,col="red")
legend("topright",inset=.05,c("MHXX return","VaR"),col=c("black","red"),lty=c(1,1))
mgarch1_fcst <- ugarchforecast(mgarch1_fit, n.ahead = 6)
mgarch1_fcst
ret.fcst <- - qnorm(0.95) * mgarch1_fcst @forecast$sigmaFor
ret.fcst
chartSeries(MHXX,name="中国民航信息",TA=NULL)
addBBands()
#addMACD()
################################量化投资策略####################################
###### 通道突破 ######
#通道突破函数==================================================================
bband.bk.sim <- function(stk.prc.xts, k=20, p=1.65, q=0.8){
#q是交易倍数,表示资金的q分用于交易
stk.prc <- coredata(stk.prc.xts) #把主要数据取出
Timeline <- index(stk.prc.xts)
End <- length(stk.prc.xts)
MA <- c( rep(0, k), 0)
std <- c( rep(0, k), 0)
u.bound <- c( rep(0, k), 0)
signal <- c( rep(0, k), 0) #交易信号
trd.state <- c( rep(0, k), 0) #记录买卖状态
share <- c( rep(0, k), 0) #记录持股份数
cash <- c( rep(1e4, k), 0) #现金部位
value <- c( rep(1e4, k), 0) #资产价值=股票市值+现金部位
# Sim ----
for( t in k:End ){
stk.prc.pre <- stk.prc[(t-k):t]
MA[t] <- mean( stk.prc.pre )
std[t] <- sd( stk.prc.pre )
u.bound[t] <- MA[t] + p * std[t] #布林带上界
signal[t] <- 0 #默认不交易
if( stk.prc[t] > u.bound[t] ) signal[t] = 1
#当股票价格超出布林上界时,buy
if( stk.prc[t-1] > MA[t-1] & stk.prc[t] <= MA[t] ) signal[t] = -1
if( stk.prc[t-1] < MA[t-1] & stk.prc[t] >= MA[t] ) signal[t] = -1
#卖的情况
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
#更新交易状态、持股数目、现金金额
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( q * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, signal, trd.state, share, cash, value)
names(res) <- c("prc", "signal", "trd.state", "share", "cash", "value")
return(res)
}
#通道突破函数END================================================================
res <- bband.bk.sim(cp)
head(res)
tail(res)
plot(res[,6],type='l',col='darkred',lty=1,lwd=2)
## 通道(end)
############################### 均线系统策略 ###################################
## 双均线交叉策略
mov.avg.sim <- function(stk.prc.xts, k=50, n=7, p=1.05, q=1.10, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
MA.5 <- SMA(stk.prc, 5) #计算5日均线
MA.20 <- SMA(stk.prc, 20) #计算20日均线
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in k:End ){
signal[t] <- 0
if( sum(MA.5[(t-n):(t-1)] > MA.20[(t-n):(t-1)]) == n
& stk.prc[t-1]/MA.20[t-1] > p) signal[t] <- 1
if( MA.5[t-1] >= MA.20[t-1] & MA.5[t] <= MA.20[t]) signal[t] <- -1
if( stk.prc[t-1]/MA.20[t-1] > q ) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- xts( cbind(stk.prc, MA.5, MA.20, signal, trd.state, share, cash, value),
order.by=Timeline)
names(res) <- c("prc", "MA.5", "MA.20","signal", "trd.state",
"share", "cash", "value")
head(res)
return(res)
}
#双均线交叉策略END==============================================================
res.mov <- mov.avg.sim(cp)
head(res.mov)
tail(res.mov)
plot(res.mov[,6],type='l',lty=1,lwd=2)
## MACD(begin)
MACD.sim <- function(stk.prc.xts, k=50, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
macd.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 1]
signal.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 2]
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in (k+1):End ){
signal[t] <- 0
if( macd.line[t-1] <= signal.line[t-1] & macd.line[t] > signal.line[t]) signal[t] <- 1
if( macd.line[t-1] >= signal.line[t-1] & macd.line[t] < signal.line[t]) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, macd.line, signal.line,
signal, trd.state, share, cash, value)
names(res) <- c("prc", "MACD.line", "signal.line",
"signal", "trd.state", "share", "cash", "value")
head(res)
return(res)
}
#MACD策略END==============================================================
res.macd <- MACD.sim(cp)
head(res.macd)
tail(res.macd)
plot(res.macd[,8],type='l',lty=1,lwd=2)
#收益率
ret.macd<-diff(res.macd[,8])
plot(ret.macd,type='l',col='red',lty=1,lwd=2)
#总收益
ret.macd.sum<-sum(ret.macd)
ret.macd.sum.ratio<-ret.macd.sum/(res.macd[1,8])
## MACD(end)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29