京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用R语言编写量化投资策略
选取一股票,利用R语言进行分析,同时构建通道突破,双均线交叉和MACD策略,进行回测。
library(xts)
library(xtsExtra)
library(quantmod)

library(FinTS)
library(forecast)
library(TSA)
library(TTR)
library(fGarch)
library(rugarch)
library(tseries)
setSymbolLookup(MHXX=list(name='0696.hk',src='yahoo'))
getSymbols("MHXX",from="2013-01-01",to="2015-09-30")
#显示K线图,如图明显发现股价呈现递增趋势,价格序列是非平稳的。
chartSeries(MHXX)
#考虑对数收益率
#获取收盘价
cp = MHXX[,4]
lgcp=log(MHXX[,4])
#tdx =c(1:456)/365+2014
#计算日收益率
ret=dailyReturn(MHXX)
chartSeries(ret,theme="white",TA=NULL)
#plot(tdx,cp,xlab="year",ylab="close price",type='l')
#计算对数收益率,如图课件,股价在15年左右有一个跳跃,15年第二季度的股价增长导致
#之后股价有较大的下降,这些特征给后续的分析带来一些较大的异常值
lgret = log(ret+1)
chartSeries(lgret,theme="white",TA=NULL)
#由ACF和PACF图可以看出,该股1股价的日收益率序列即使存在某种相关性,该自相关性也
#很小
par(mfcol=c(2,1))
acf(lgret,lag=30)
pacf(lgret,lag=30)
#为了验证该收益率序列有没有序列相关性,使用Ljung-Box检验,结果对应的P值0.024,
#在1%的显著水平下,拒绝该股票日收益率没有显著前后相关性的这一原假设。
#但在5%的显著水平下,无法拒绝该股票日收益率没有显著前后相关性的这一原假设。
Box.test(lgret,lag=20,type='Ljung')
##############################################################################
m1 <- auto.arima(lgret,stationary=TRUE,seasonal=FALSE,ic="aic")
#鉴于该股票对数收益率序列的自相关性并不强,所以建立的ARIMA模型可能适用性不高。
#对于对数收益率序列,单样本的t检验结果的t比为1.0625,p值为0.2884,表明该序列不是
#显著异于零的,同时此处根据ACF图所示,在4阶有轻微的超越标准差线,
#因此取用AR(5)模型拟合,aic=-2987.43
m2 <- arima(x=lgret,order=c(4,0,0),include.mean=F)
tratio=m2$coef/sqrt(diag(m2$var.coef))
tratio
meacf=eacf(lgret,6,12)
print(meacf$eacf,digits=2)
#残差检验并表示改模型可能不是充分的
tsdiag(m2,gof=20)
m3 <-auto.arima(ret,stationary = TRUE,seasonal = FALSE,ic="aic")
m3
################################################################################
#由上述可知,对于价格变化的分析,纯ARMA模型是不充分的,一方面ARMA模型不能处理
#波动率聚集,另一方面,ARMA-GARCH模型能充分处理这些数据的复杂性,
#并能提高样本外预测
price=ts(cp)
dp=ts(diff(cp))
par(mfcol=c(2,1))
plot(price,xlab='year',ylab='price')
plot(dp,xlab='year',ylab='changes')
cprice=diff(price)
par(mfcol=c(2,1))
acf(cprice)
pacf(cprice)
#aic=-0.37
m.garch1<-garchFit(~1+garch(1,1),data=cprice,trace=F)
summary(m.garch1)
#aic=-0.62
m.garch2<-garchFit(~arma(6,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch2)
#aic=-0.60
m.garch3<-garchFit(~arma(2,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch3)
#aic=-0.596
m.garch4<-garchFit(~arma(1,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch4)
#回测检验
source("backtestGarch.R")
M2F=backtestGarch(cprice,714,2,inc.mean=F,cdist="sstd")
source("backtest.R")
M2AF=backtest(m2,cprice,714,2,inc.mean=F)
#ArchTest(coredata(ret))
################################################################################
#计算VaR
mgarch1<-ugarchspec(variance.model=list(garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0)))
mgarch1_fit<-ugarchfit(spec=mgarch1,data=cprice)
mgarch1_fit
mgarch1_roll<-ugarchroll(mgarch1,cprice,n.start=120,refit.every=1,
refit.window = "moving",solver="hybrid",
calculate.VaR = TRUE,VaR.alpha = 0.01,keep.coef = TRUE)
report(mgarch1_roll,type="VaR",VaR.alpha=0.01,conf.level=0.99)
#生成PLOT
cprice_var<-zoo(mgarch1_roll@forecast$VaR[,1])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
cprice_actual<-zoo(mgarch1_roll@forecast$VaR[,2])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
plot(cprice_actual,type="b",main="99% day Var backtesting",xlab="Date",
ylab="Return /VaR in percent")
lines(cprice_var,col="red")
legend("topright",inset=.05,c("MHXX return","VaR"),col=c("black","red"),lty=c(1,1))
mgarch1_fcst <- ugarchforecast(mgarch1_fit, n.ahead = 6)
mgarch1_fcst
ret.fcst <- - qnorm(0.95) * mgarch1_fcst @forecast$sigmaFor
ret.fcst
chartSeries(MHXX,name="中国民航信息",TA=NULL)
addBBands()
#addMACD()
################################量化投资策略####################################
###### 通道突破 ######
#通道突破函数==================================================================
bband.bk.sim <- function(stk.prc.xts, k=20, p=1.65, q=0.8){
#q是交易倍数,表示资金的q分用于交易
stk.prc <- coredata(stk.prc.xts) #把主要数据取出
Timeline <- index(stk.prc.xts)
End <- length(stk.prc.xts)
MA <- c( rep(0, k), 0)
std <- c( rep(0, k), 0)
u.bound <- c( rep(0, k), 0)
signal <- c( rep(0, k), 0) #交易信号
trd.state <- c( rep(0, k), 0) #记录买卖状态
share <- c( rep(0, k), 0) #记录持股份数
cash <- c( rep(1e4, k), 0) #现金部位
value <- c( rep(1e4, k), 0) #资产价值=股票市值+现金部位
# Sim ----
for( t in k:End ){
stk.prc.pre <- stk.prc[(t-k):t]
MA[t] <- mean( stk.prc.pre )
std[t] <- sd( stk.prc.pre )
u.bound[t] <- MA[t] + p * std[t] #布林带上界
signal[t] <- 0 #默认不交易
if( stk.prc[t] > u.bound[t] ) signal[t] = 1
#当股票价格超出布林上界时,buy
if( stk.prc[t-1] > MA[t-1] & stk.prc[t] <= MA[t] ) signal[t] = -1
if( stk.prc[t-1] < MA[t-1] & stk.prc[t] >= MA[t] ) signal[t] = -1
#卖的情况
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
#更新交易状态、持股数目、现金金额
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( q * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, signal, trd.state, share, cash, value)
names(res) <- c("prc", "signal", "trd.state", "share", "cash", "value")
return(res)
}
#通道突破函数END================================================================
res <- bband.bk.sim(cp)
head(res)
tail(res)
plot(res[,6],type='l',col='darkred',lty=1,lwd=2)
## 通道(end)
############################### 均线系统策略 ###################################
## 双均线交叉策略
mov.avg.sim <- function(stk.prc.xts, k=50, n=7, p=1.05, q=1.10, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
MA.5 <- SMA(stk.prc, 5) #计算5日均线
MA.20 <- SMA(stk.prc, 20) #计算20日均线
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in k:End ){
signal[t] <- 0
if( sum(MA.5[(t-n):(t-1)] > MA.20[(t-n):(t-1)]) == n
& stk.prc[t-1]/MA.20[t-1] > p) signal[t] <- 1
if( MA.5[t-1] >= MA.20[t-1] & MA.5[t] <= MA.20[t]) signal[t] <- -1
if( stk.prc[t-1]/MA.20[t-1] > q ) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- xts( cbind(stk.prc, MA.5, MA.20, signal, trd.state, share, cash, value),
order.by=Timeline)
names(res) <- c("prc", "MA.5", "MA.20","signal", "trd.state",
"share", "cash", "value")
head(res)
return(res)
}
#双均线交叉策略END==============================================================
res.mov <- mov.avg.sim(cp)
head(res.mov)
tail(res.mov)
plot(res.mov[,6],type='l',lty=1,lwd=2)
## MACD(begin)
MACD.sim <- function(stk.prc.xts, k=50, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
macd.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 1]
signal.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 2]
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in (k+1):End ){
signal[t] <- 0
if( macd.line[t-1] <= signal.line[t-1] & macd.line[t] > signal.line[t]) signal[t] <- 1
if( macd.line[t-1] >= signal.line[t-1] & macd.line[t] < signal.line[t]) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, macd.line, signal.line,
signal, trd.state, share, cash, value)
names(res) <- c("prc", "MACD.line", "signal.line",
"signal", "trd.state", "share", "cash", "value")
head(res)
return(res)
}
#MACD策略END==============================================================
res.macd <- MACD.sim(cp)
head(res.macd)
tail(res.macd)
plot(res.macd[,8],type='l',lty=1,lwd=2)
#收益率
ret.macd<-diff(res.macd[,8])
plot(ret.macd,type='l',col='red',lty=1,lwd=2)
#总收益
ret.macd.sum<-sum(ret.macd)
ret.macd.sum.ratio<-ret.macd.sum/(res.macd[1,8])
## MACD(end)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26