
利用R语言编写量化投资策略
选取一股票,利用R语言进行分析,同时构建通道突破,双均线交叉和MACD策略,进行回测。
library(xts)
library(xtsExtra)
library(quantmod)
library(FinTS)
library(forecast)
library(TSA)
library(TTR)
library(fGarch)
library(rugarch)
library(tseries)
setSymbolLookup(MHXX=list(name='0696.hk',src='yahoo'))
getSymbols("MHXX",from="2013-01-01",to="2015-09-30")
#显示K线图,如图明显发现股价呈现递增趋势,价格序列是非平稳的。
chartSeries(MHXX)
#考虑对数收益率
#获取收盘价
cp = MHXX[,4]
lgcp=log(MHXX[,4])
#tdx =c(1:456)/365+2014
#计算日收益率
ret=dailyReturn(MHXX)
chartSeries(ret,theme="white",TA=NULL)
#plot(tdx,cp,xlab="year",ylab="close price",type='l')
#计算对数收益率,如图课件,股价在15年左右有一个跳跃,15年第二季度的股价增长导致
#之后股价有较大的下降,这些特征给后续的分析带来一些较大的异常值
lgret = log(ret+1)
chartSeries(lgret,theme="white",TA=NULL)
#由ACF和PACF图可以看出,该股1股价的日收益率序列即使存在某种相关性,该自相关性也
#很小
par(mfcol=c(2,1))
acf(lgret,lag=30)
pacf(lgret,lag=30)
#为了验证该收益率序列有没有序列相关性,使用Ljung-Box检验,结果对应的P值0.024,
#在1%的显著水平下,拒绝该股票日收益率没有显著前后相关性的这一原假设。
#但在5%的显著水平下,无法拒绝该股票日收益率没有显著前后相关性的这一原假设。
Box.test(lgret,lag=20,type='Ljung')
##############################################################################
m1 <- auto.arima(lgret,stationary=TRUE,seasonal=FALSE,ic="aic")
#鉴于该股票对数收益率序列的自相关性并不强,所以建立的ARIMA模型可能适用性不高。
#对于对数收益率序列,单样本的t检验结果的t比为1.0625,p值为0.2884,表明该序列不是
#显著异于零的,同时此处根据ACF图所示,在4阶有轻微的超越标准差线,
#因此取用AR(5)模型拟合,aic=-2987.43
m2 <- arima(x=lgret,order=c(4,0,0),include.mean=F)
tratio=m2$coef/sqrt(diag(m2$var.coef))
tratio
meacf=eacf(lgret,6,12)
print(meacf$eacf,digits=2)
#残差检验并表示改模型可能不是充分的
tsdiag(m2,gof=20)
m3 <-auto.arima(ret,stationary = TRUE,seasonal = FALSE,ic="aic")
m3
################################################################################
#由上述可知,对于价格变化的分析,纯ARMA模型是不充分的,一方面ARMA模型不能处理
#波动率聚集,另一方面,ARMA-GARCH模型能充分处理这些数据的复杂性,
#并能提高样本外预测
price=ts(cp)
dp=ts(diff(cp))
par(mfcol=c(2,1))
plot(price,xlab='year',ylab='price')
plot(dp,xlab='year',ylab='changes')
cprice=diff(price)
par(mfcol=c(2,1))
acf(cprice)
pacf(cprice)
#aic=-0.37
m.garch1<-garchFit(~1+garch(1,1),data=cprice,trace=F)
summary(m.garch1)
#aic=-0.62
m.garch2<-garchFit(~arma(6,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch2)
#aic=-0.60
m.garch3<-garchFit(~arma(2,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch3)
#aic=-0.596
m.garch4<-garchFit(~arma(1,0)+garch(1,1),data=cprice,trace=F,ininclude.mean = F,
cond.dist = "std")
summary(m.garch4)
#回测检验
source("backtestGarch.R")
M2F=backtestGarch(cprice,714,2,inc.mean=F,cdist="sstd")
source("backtest.R")
M2AF=backtest(m2,cprice,714,2,inc.mean=F)
#ArchTest(coredata(ret))
################################################################################
#计算VaR
mgarch1<-ugarchspec(variance.model=list(garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0)))
mgarch1_fit<-ugarchfit(spec=mgarch1,data=cprice)
mgarch1_fit
mgarch1_roll<-ugarchroll(mgarch1,cprice,n.start=120,refit.every=1,
refit.window = "moving",solver="hybrid",
calculate.VaR = TRUE,VaR.alpha = 0.01,keep.coef = TRUE)
report(mgarch1_roll,type="VaR",VaR.alpha=0.01,conf.level=0.99)
#生成PLOT
cprice_var<-zoo(mgarch1_roll@forecast$VaR[,1])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
cprice_actual<-zoo(mgarch1_roll@forecast$VaR[,2])
index(cprice_var)<-as.yearmon(rownames(mgarch1_roll@forecast$VaR))
plot(cprice_actual,type="b",main="99% day Var backtesting",xlab="Date",
ylab="Return /VaR in percent")
lines(cprice_var,col="red")
legend("topright",inset=.05,c("MHXX return","VaR"),col=c("black","red"),lty=c(1,1))
mgarch1_fcst <- ugarchforecast(mgarch1_fit, n.ahead = 6)
mgarch1_fcst
ret.fcst <- - qnorm(0.95) * mgarch1_fcst @forecast$sigmaFor
ret.fcst
chartSeries(MHXX,name="中国民航信息",TA=NULL)
addBBands()
#addMACD()
################################量化投资策略####################################
###### 通道突破 ######
#通道突破函数==================================================================
bband.bk.sim <- function(stk.prc.xts, k=20, p=1.65, q=0.8){
#q是交易倍数,表示资金的q分用于交易
stk.prc <- coredata(stk.prc.xts) #把主要数据取出
Timeline <- index(stk.prc.xts)
End <- length(stk.prc.xts)
MA <- c( rep(0, k), 0)
std <- c( rep(0, k), 0)
u.bound <- c( rep(0, k), 0)
signal <- c( rep(0, k), 0) #交易信号
trd.state <- c( rep(0, k), 0) #记录买卖状态
share <- c( rep(0, k), 0) #记录持股份数
cash <- c( rep(1e4, k), 0) #现金部位
value <- c( rep(1e4, k), 0) #资产价值=股票市值+现金部位
# Sim ----
for( t in k:End ){
stk.prc.pre <- stk.prc[(t-k):t]
MA[t] <- mean( stk.prc.pre )
std[t] <- sd( stk.prc.pre )
u.bound[t] <- MA[t] + p * std[t] #布林带上界
signal[t] <- 0 #默认不交易
if( stk.prc[t] > u.bound[t] ) signal[t] = 1
#当股票价格超出布林上界时,buy
if( stk.prc[t-1] > MA[t-1] & stk.prc[t] <= MA[t] ) signal[t] = -1
if( stk.prc[t-1] < MA[t-1] & stk.prc[t] >= MA[t] ) signal[t] = -1
#卖的情况
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
#更新交易状态、持股数目、现金金额
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( q * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, signal, trd.state, share, cash, value)
names(res) <- c("prc", "signal", "trd.state", "share", "cash", "value")
return(res)
}
#通道突破函数END================================================================
res <- bband.bk.sim(cp)
head(res)
tail(res)
plot(res[,6],type='l',col='darkred',lty=1,lwd=2)
## 通道(end)
############################### 均线系统策略 ###################################
## 双均线交叉策略
mov.avg.sim <- function(stk.prc.xts, k=50, n=7, p=1.05, q=1.10, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
MA.5 <- SMA(stk.prc, 5) #计算5日均线
MA.20 <- SMA(stk.prc, 20) #计算20日均线
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in k:End ){
signal[t] <- 0
if( sum(MA.5[(t-n):(t-1)] > MA.20[(t-n):(t-1)]) == n
& stk.prc[t-1]/MA.20[t-1] > p) signal[t] <- 1
if( MA.5[t-1] >= MA.20[t-1] & MA.5[t] <= MA.20[t]) signal[t] <- -1
if( stk.prc[t-1]/MA.20[t-1] > q ) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- xts( cbind(stk.prc, MA.5, MA.20, signal, trd.state, share, cash, value),
order.by=Timeline)
names(res) <- c("prc", "MA.5", "MA.20","signal", "trd.state",
"share", "cash", "value")
head(res)
return(res)
}
#双均线交叉策略END==============================================================
res.mov <- mov.avg.sim(cp)
head(res.mov)
tail(res.mov)
plot(res.mov[,6],type='l',lty=1,lwd=2)
## MACD(begin)
MACD.sim <- function(stk.prc.xts, k=50, m=0.8){
stk.prc <- coredata(stk.prc.xts)
Timeline <- index(stk.prc.xts)
End <- length(stk.prc)
macd.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 1]
signal.line <- MACD(stk.prc, nFast=12, nSlow=26, nSig=9)[, 2]
signal <- c( rep(0, k), 0)
trd.state <- c( rep(0, k), 0)
share <- c( rep(0, k), 0)
cash <- c( rep(1e4, k), 0)
value <- c( rep(1e4, k), 0)
# Sim -----
for( t in (k+1):End ){
signal[t] <- 0
if( macd.line[t-1] <= signal.line[t-1] & macd.line[t] > signal.line[t]) signal[t] <- 1
if( macd.line[t-1] >= signal.line[t-1] & macd.line[t] < signal.line[t]) signal[t] <- -1
trd.state[t] <- trd.state[t-1]
cash[t] <- cash[t-1]
share[t] <- share[t-1]
value[t] <- value[t-1]
if( trd.state[t-1] == 0 & signal[t] == 1 ){
trd.state[t] <- 1
share[t] <- ( m * cash[t-1] ) / stk.prc[t]
cash[t] <- cash[t-1] - share[t]*stk.prc[t]
}
if( trd.state[t-1] == 1 & signal[t] == -1 ){
trd.state[t] <- 0
share[t] <- 0
cash[t] <- cash[t-1] + share[t-1]*stk.prc[t]
}
value[t] <- cash[t] + share[t]*stk.prc[t]
}
res <- cbind(stk.prc, macd.line, signal.line,
signal, trd.state, share, cash, value)
names(res) <- c("prc", "MACD.line", "signal.line",
"signal", "trd.state", "share", "cash", "value")
head(res)
return(res)
}
#MACD策略END==============================================================
res.macd <- MACD.sim(cp)
head(res.macd)
tail(res.macd)
plot(res.macd[,8],type='l',lty=1,lwd=2)
#收益率
ret.macd<-diff(res.macd[,8])
plot(ret.macd,type='l',col='red',lty=1,lwd=2)
#总收益
ret.macd.sum<-sum(ret.macd)
ret.macd.sum.ratio<-ret.macd.sum/(res.macd[1,8])
## MACD(end)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04