
手把手教你使用【python】在京东量化平台完成简单策略回测
今天来教大家使用量化平台中Python的部分,完成一个简单的策略回测。
首先,回测界面是长这个样子的
可以看到,左半边的大部分区域是编辑代码的地方,开发环境会自动识别Python语言的关键词。在代码区上面的设置标志里面可以个性化调节开发环境的视觉效果。
Python的回测代码主要包括init()函数,handle_data()函数,以及其他用户自定义内容。如果在每天开盘前要进行额外的处理或计算,可选择添加before_trade()函数。
def init(context):
# 这里用来写策略开始时要做什么
注释
其中,init()是初始化函数,可以设置基准,滑点,佣金等回测参数,也可以利用context自定义变量。在Python及大部分其他编程语言中,在局部变量只在该变量定义的函数体有效,在其他函数体内是无效的。而context被定义为一个局部变量,可以把内容在不同函数代码之间传导。该函数在回测开始时运行一次。
def handle_data(context, data_dict):
# 这里用来写每天开盘后要做什么,可以是计算,输出日志,或者下单
注释
handle_data()是每个交易时间点(分钟/日)时自动运行一次的函数,可以在此函数内设置交易判断和下单,是策略核心逻辑所在。
def before_trade(context):
# 非强制,在这里写每天开盘之前要做什么,不可下单
注释
用户可以按照Python语言规则定义其他函数,包括运算/数据处理函数,也可以通过task()函数设置自定义函数的执行频率和执行时间。
III、编译策略代码
1、确定策略框架内容
举个栗子,用一个简单的策略为例来演示这个过程。
策略的内容是对贵州茅台(600519.SH)进行择时
如果前一天收益率大于沪深300收益率,则买入持仓
如果前一天收益率小于沪深300收益率,则不持仓。
只买卖一只股票操作是很简单的。首先,我们在init()函数里面设置我们的股票(贵州茅台(600519.SH))和比较标的(沪深300(000300.SH)):
# init方法是您的初始化逻辑。context对象可以在任何方法之间传递。
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
注释
1)只要在“#”后面的内容都是注释,不会被Python编译
2)设置stock和set_benchmark对象时,一定要在前面加上“context.”,这样才能传递到之后的函数中。设置标的后,回测中的基准曲线和收益将采用设置的指数。
2、确认每个交易日的逻辑:
l 获取目标股票和标的的历史价格
# 日或分钟或实时数据更新,将会调用这个方法
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
注释
1)其中context.stock和context.set_benchmark都在init()函数中定义好了。
2)get_history()函数是京东量化平台封装的取历史交易数据的函数。其中“2”代表要取历史两天的数据,以便计算上个交易日的收益。“’1d’”和“'close’”分别表示数据频率为天,所需数据为收盘价。
3)返回的价格为pandas.Series类型。各个平台函数的使用方法可以查看帮助板块中的API文档。
l 定义收益率
为了方便计算收益率,自定义了一个CalRet()函数,输入连续两天的价格,计算第二天的收益率:
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
注释
1)这段函数写在handle_data()之前。自定义函数编辑的语法符合Python语法即可。
2)这个函数会返回float类型的r。
l 计算目标股票和标的的收益率
我们回到handle_data()函数,利用刚刚定义的函数和获取的股票及指数价格计算收益率:
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
注释
1)以上函数可以得到上个交易日股票的收益率ytdRet和指数收益率bmRet。
3、确认股票买入卖出的逻辑:
如果ytdRet大于bmRet,则全仓买入平安银行股票,否则清仓
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
注释
1)order_target_percent()是量化平台编辑的下单函数,可以设置某个股票的仓位至一个百分比。
2)平台同样支持加减仓,用手数,金额等方式下单,详见API文档。
4、确认所有策略逻辑
以上,所有的策略逻辑就完成啦!
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
完成简单的策略回测
现在,我们就完成了这个策略的设计。回测平台会自动按照这个逻辑,在回测区间内完成交易。
选定回测的时间区间。初始金额以及调仓频率,如下图
我们设置回测区间为2015年1月1日-2016年1月1日,初始金额为一百万,调仓频率为每天,点击“运行回测”。结果如下:
注释
1)回测:策略回测就是拿到证券市场历史的财务数据、行情数据,对现有的策略进行历史回测检验,通过回测结果来修正自己的策略,从而验证策略在过去市场的有效性以及稳定性。
2)回测输出结果
I、我们可以看到在回测区间内,策略和基准的净值曲线,每天盈亏,买卖等图像,以及回测的技术指标。同时可以查看相对收益,对数收益等。
II、在左边的交易详情,持仓和输出日志中可以看到回测中的具体情况,方便进行归因分析,调整策略等等,同时还可以查看历史回测记录。
III、我们可以看到,这个策略能够跑赢大盘。当然,这只是一个例子。
3)回测的评判
I、收益,回测收益和基准收益的对比,收益越高盈利能力越强
II、最大回撤,最大回撤要低,越低代表亏损幅度越低,策略越稳定
III、交易频率,点击交易详情可以查看策略交易的频次,频率越高,策略越稳定
III、把回测的策略发布到策略榜,还可以分析策略的晨星风格及收益归因分析,多角度的判断策略的好坏
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18