京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业分析如何帮助企业重塑核心竞争力
在大数据来袭的今天,在企业重塑核心竞争力的征途中,企业经营数据和商业分析,好比“车之两轮,鸟之两翼”,二者缺一不可。在如下的阐述中,我先从商业分析(BA)角度谈谈是如何具体帮助企业重塑核心竞争力的。

首先,商业分析(BA)是一个具有系统化企业管理思想、符合企业决策思维的系统。商业分析(BA)不是把企业管理思想随意堆积在一个商业软件中,它蕴含的企业管理思想是成体系的,它是有管理灵魂的。我拿供应链分析举例来说,供应链分析中其中有三个关键指标:交货及时率、存货周转率与库存呆滞积压率,但交货及时率与存货周转率、库存呆滞积压率是相互矛盾的,要提高交货及时率,很多企业就会首先想到增大库存量,但增大库存量就影响了存货周转率和库存呆滞积压率。所以,商业分析(BA)需要融入系统化的管理思想,掌握这三个指标的平衡;在帮助企业提高交货及时率的同时,尽可能的提高存货周转率和降低库存呆滞积压率。近而,实现供应链的均衡,提升企业的管理水平及效益!企业管理中产生某一个现象,背后可能有若干种原因,不同的管理者分析原因时,可能从不同的角度入手;这就需要商业分析(BA)符合企业管理者分析问题的决策思维方式。比如说,在销售业绩分析中,华北区今年的销售业绩不错,如果接着往下想查看一下在华北区,哪些产品卖得好?哪些业务员业绩高?哪些客户贡献大?这些客户的过去贡献情况如何?针对诸如此类的分析,不同的管理者可能分析的路径不一样,有的想先查看产品再查看业务员的业绩,有的想先查看客户再查看业务员的业绩等等,这些都需要商业分析(BA)有很好的支持。通过诸如此类的分析,企业管理者甚至还可以分析到,虽然华北区整体销售业绩不错,但是华北区的某一个大客户的销售贡献一般。从中真正的做到透视经营,洞察管理,辅助决策!
其次,商业分析(BA)具有先进的技术保障。从技术层面上来讲,商业分析(BA)处理的是企业多年积累的大量数据,甚至包括很多企业外部数据,这就在技术上要求商业分析(BA)具有强大的数据分析引擎,提升数据处理速度的能力。因为,商业分析(BA)不仅仅让企业洞察过去,而且能够预测未来,这就要求其具有统计分析、数据挖掘等相关的技术支撑。我拿用友商业分析举例,来说明商业分析(BA)系统是如何在技术上做到这两点的。用友商业分析,是基于用友集团UAP(Unified Application Platform)的AE与BQ两个平台之上的商业分析应用系统。其中,AE(Acceleration Engine)是支持企业计算关键技术的大数据处理平台,它包括处理引擎、开发工具、管理工具及数据服务功能,其中处理引擎是AE的核心部分。BQ(Business
Quotient)是UAP产品功能集的一部分,是一个企业级、全功能的最佳分析决策平台,它分为5层技术架构,其中数据处理层基于数据处理平台AE,在分析模型层又基于数据挖掘预置了丰富的分析、预测模型。用友商业分析系统为什么技术那么先进,从如上两个方面来看,我们就不难理解了。
再次,商业分析(BA)源于丰富的企业实践的提炼,并满足灵活的企业决策分析。管理重在实践,商业分析(BA)是为企业管理服务的,同样要经过大量企业实践的验证。“管理既是科学,又是艺术”,艺术具有灵活性,不同企业的业务处理千差万别,不同企业的管理要求也不尽相同,这要求商业分析(BA)在大量实践的基础上具有灵活性。我仍拿企业的交货及时率举例,不同的企业确认及时交货的时点不同,有的根据发货时间确认,有的依据客户签收时间确认,这就要求商业分析(BA)支持不同的发货及时率的计算规则。同时,有些企业在交货及时率上允许有时间容差,比如说:在计算到货及时率时,甲企业在要求到货时间的前后两天内到货,都算及时到货;乙企业在要求到货的前后一天内到货,才算及时到货;这就要求商业分析(BA)在功能上具有灵活的设置,以便满足企业这些灵活的分析需求。
最后,商业分析(BA)不但能够帮助企业分析现在,而且能够预测未来。企业的决策大多是面对未来的决策,这对决策支持系统有预测未来的天然要求,商业分析(BA)很好的满足了此类需求。我拿销售领域的“客户流失预测模型”来举例,为了做这个预测我们首先要思考三个问题,客户多长时间购买一次?客户每次买多少,波动性如何?客户多长时间没购买了?想要得到这三个问题的答案,商业分析(BA)系统中一般在“客户流失预测模型”中预置“客户购买周期分析、客户保持率、客户未动期”这三个关键的功能指标。然后,用户在根据特定的需求在“客户流失预测模型”中增加一些指标。通过“客户流失预测模型”的预测结果,企业适当调整营销策略,以便减少客户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26