京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业分析如何帮助企业重塑核心竞争力
在大数据来袭的今天,在企业重塑核心竞争力的征途中,企业经营数据和商业分析,好比“车之两轮,鸟之两翼”,二者缺一不可。在如下的阐述中,我先从商业分析(BA)角度谈谈是如何具体帮助企业重塑核心竞争力的。

首先,商业分析(BA)是一个具有系统化企业管理思想、符合企业决策思维的系统。商业分析(BA)不是把企业管理思想随意堆积在一个商业软件中,它蕴含的企业管理思想是成体系的,它是有管理灵魂的。我拿供应链分析举例来说,供应链分析中其中有三个关键指标:交货及时率、存货周转率与库存呆滞积压率,但交货及时率与存货周转率、库存呆滞积压率是相互矛盾的,要提高交货及时率,很多企业就会首先想到增大库存量,但增大库存量就影响了存货周转率和库存呆滞积压率。所以,商业分析(BA)需要融入系统化的管理思想,掌握这三个指标的平衡;在帮助企业提高交货及时率的同时,尽可能的提高存货周转率和降低库存呆滞积压率。近而,实现供应链的均衡,提升企业的管理水平及效益!企业管理中产生某一个现象,背后可能有若干种原因,不同的管理者分析原因时,可能从不同的角度入手;这就需要商业分析(BA)符合企业管理者分析问题的决策思维方式。比如说,在销售业绩分析中,华北区今年的销售业绩不错,如果接着往下想查看一下在华北区,哪些产品卖得好?哪些业务员业绩高?哪些客户贡献大?这些客户的过去贡献情况如何?针对诸如此类的分析,不同的管理者可能分析的路径不一样,有的想先查看产品再查看业务员的业绩,有的想先查看客户再查看业务员的业绩等等,这些都需要商业分析(BA)有很好的支持。通过诸如此类的分析,企业管理者甚至还可以分析到,虽然华北区整体销售业绩不错,但是华北区的某一个大客户的销售贡献一般。从中真正的做到透视经营,洞察管理,辅助决策!
其次,商业分析(BA)具有先进的技术保障。从技术层面上来讲,商业分析(BA)处理的是企业多年积累的大量数据,甚至包括很多企业外部数据,这就在技术上要求商业分析(BA)具有强大的数据分析引擎,提升数据处理速度的能力。因为,商业分析(BA)不仅仅让企业洞察过去,而且能够预测未来,这就要求其具有统计分析、数据挖掘等相关的技术支撑。我拿用友商业分析举例,来说明商业分析(BA)系统是如何在技术上做到这两点的。用友商业分析,是基于用友集团UAP(Unified Application Platform)的AE与BQ两个平台之上的商业分析应用系统。其中,AE(Acceleration Engine)是支持企业计算关键技术的大数据处理平台,它包括处理引擎、开发工具、管理工具及数据服务功能,其中处理引擎是AE的核心部分。BQ(Business
Quotient)是UAP产品功能集的一部分,是一个企业级、全功能的最佳分析决策平台,它分为5层技术架构,其中数据处理层基于数据处理平台AE,在分析模型层又基于数据挖掘预置了丰富的分析、预测模型。用友商业分析系统为什么技术那么先进,从如上两个方面来看,我们就不难理解了。
再次,商业分析(BA)源于丰富的企业实践的提炼,并满足灵活的企业决策分析。管理重在实践,商业分析(BA)是为企业管理服务的,同样要经过大量企业实践的验证。“管理既是科学,又是艺术”,艺术具有灵活性,不同企业的业务处理千差万别,不同企业的管理要求也不尽相同,这要求商业分析(BA)在大量实践的基础上具有灵活性。我仍拿企业的交货及时率举例,不同的企业确认及时交货的时点不同,有的根据发货时间确认,有的依据客户签收时间确认,这就要求商业分析(BA)支持不同的发货及时率的计算规则。同时,有些企业在交货及时率上允许有时间容差,比如说:在计算到货及时率时,甲企业在要求到货时间的前后两天内到货,都算及时到货;乙企业在要求到货的前后一天内到货,才算及时到货;这就要求商业分析(BA)在功能上具有灵活的设置,以便满足企业这些灵活的分析需求。
最后,商业分析(BA)不但能够帮助企业分析现在,而且能够预测未来。企业的决策大多是面对未来的决策,这对决策支持系统有预测未来的天然要求,商业分析(BA)很好的满足了此类需求。我拿销售领域的“客户流失预测模型”来举例,为了做这个预测我们首先要思考三个问题,客户多长时间购买一次?客户每次买多少,波动性如何?客户多长时间没购买了?想要得到这三个问题的答案,商业分析(BA)系统中一般在“客户流失预测模型”中预置“客户购买周期分析、客户保持率、客户未动期”这三个关键的功能指标。然后,用户在根据特定的需求在“客户流失预测模型”中增加一些指标。通过“客户流失预测模型”的预测结果,企业适当调整营销策略,以便减少客户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03