京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的生命周期的九个阶段
企业建立大数据的生命周期应该包括这些部分:大数据组织、评估现状、制定大数据战略、数据定义、数据收集、数据分析、数据治理、持续改进。

一、大数据的组织
没有人,一切都是妄谈。大数据生命周期的第一步应该是建立一个专门预算和独立KPI的“大数据规划、建设和运营组织”。包括高层的首席数据官,作为sponsor,然后是公司数据管理委员会或大数据执行筹划指导委员会,再往下就是大数据的项目组或大数据项目组的前身:大数据项目预研究团队或大数据项目筹备组。这个团队是今后大数据战略的制定和实施者的中坚力量。由于人数众多,建议引入RACI模型来明确所有人的角色和职责。
二、大数据的现状评估和差距分析
定战略之前,先要做现状评估,评估前的调研包括三个方面:一是对外调研:了解业界大数据有哪些最新的发展,行业顶尖企业的大数据应用水平如何?行业的平均尤其是主要竞争对手的大数据应用水准如何?二是对内客户调研。管理层、业务部门、IT部门自身、我们的最终用户,对我们的大数据业务有何期望?三是自身状况摸底,了解自己的技术、人员储备情况。最后对标,作差距分析,找出gap。
找出gap后,要给出成熟度现状评估。一般而言,一个公司的大数据应用成熟度可以划分为四个阶段:初始期(仅有概念,没有实践);探索期(已经了解基本概念,也有专人进行了探索和探讨,有了基本的大数据技术储备);发展期(已经拥有或正在建设明确的战略、团队、工具、流程,交付了初步的成果);成熟期(有了稳定且不断成熟的战略、团队、工具、流程,不断交付高质量成果)。
三、大数据的战略
有了大数据组织、知道了本公司大数据现状、差距和需求,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据生命周期的灵魂和核心,它将成为整个组织大数据发展的指引。
大数据战略的内容,没有统一的模板,但有一些基本的要求:
1. 要简洁,又要能涵盖公司内外干系人的需求。
2. 要明确,以便清晰地告诉所有人我们的目标和愿景是什么。
3. 要现实,这个目标经过努力是能达成的。
四、大数据的定义
我认为:“数据不去定义它,你就无法采集它;无法采集它,你就无法分析它;无法分析它,你就无法衡量它;无法衡量它,你就无法控制它;无法控制它,你就无法管理它;无法管理它,你就无法利用它”。所以“在需求和战略明确之后,数据定义就是一切数据管理的前提”。
五、 数据采集
1. 大数据时代的数据源很广泛,它们可能来自于三个主要方面:现有公司内部网各应用系统产生的数据(比如办公、经营生产数据),也有来自公司外互联网的数据(比如社交网络数据)和物联网等。
2.大数据种类很多,总的来讲可以分为:传统的结构化数据,大量的非结构化数据(比如音视频等)。
3. 数据采集、挖掘工具很多。可以基于或集成hadoop的ETL平台、以交互式探索及数据挖掘为代表的数据价值发掘类工具渐成趋势。
4. 数据采集的原则:在数据源广泛、数据量巨大、采集挖掘工具众多的背景下,大数据决策者必须清楚地确定数据采集的原则:“能够采集到的数据,并不意味着值得或需要去采集它。需要采集的数据和能够采集到的数据的"交集",才是我们确定要去采集的数据。”
六、数据处理和分析
业界有很多工具能帮助企业构建一个集成的“数据处理和分析平台”。对企业大数据管理者、规划者来讲,关键是“工具要满足平台要求,平台要满足业务需求,而不是业务要去适应平台要求,平台要去适应厂商的工具要求”。那么这个集成的平台应该有怎样的能力构成呢?它应该能检索、分类、关联、推送和方便地实施元数据管理等。见下图:
七、 数据呈现
大数据管理的价值,最终要通过多种形式的数据呈现,来帮助管理层和业务部门进行商业决策。大数据的决策者需要将大数据的系统与BI(商业智能)系统和KM(知识管理)系统集成。下图就是大数据的各种呈现形式。
八、 审计、治理与控制
1.大数据的审计、治理和控制指的是大数据管理层,组建专门的治理控制团队,制定一系列策略、流程、制度和考核指标体系,来监督、检查、协调多个相关职能部门的目标,从而优化、保护和利用大数据,保障其作为一项企业战略资产真正发挥价值。
2.大数据的治理是IT治理的组成部分,大数据的审计是IT审计的组成部分,这个体系要统筹规划和实施,而不是割裂的规划和实施。
3.大数据的审计、治理与控制的核心是数据安全、数据质量和数据效率。
九、 持续改进
基于不断变化的业务需求和审计与治理中发现的大数据整个生命周期中暴露的问题,引入PDCA等方法论,去不断优化策略、方法、流程、工具,不断提升相关人员的技能,从而确保大数据战略的持续成功!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01