京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拥抱大数据:“数”中自有黄金屋
新的石油”、“类似货币或黄金的新型经济资产”、“未来的自然资源”……
今天,当人们在评价种类广泛、数量庞大、产生和更新速度惊人的大数据时,几乎没有人会吝啬这些极富有渲染性甚至有些耸人听闻的话语。伴随着大数据在各行各业的探索之路的启程,其蕴含的巨大价值所显露出的“冰山一角”就已然拥有足以令世人惊叹的力量。

大数据究竟价值几何?
“当前,数据就是生产资料,对大数据的合理共享和利用,就会创造出巨大的财富。”中国工程院院士邬贺铨在接受《人民邮电》报记者采访时如是说。正因为大数据有着公认的“生产资料”的属性,因此其创造财富的空间,几乎是不受任何限制的,其触角可以延伸至各行各业。
从宏观经济到微观经济,从工业到农业,从制造业到服务业,大数据就如同埋藏在沙漠中的金子一样,正在散发出迷人的光芒。
正如邬贺铨所说:“大数据技术可以运用到各行各业,引发新的产业变革,带动新的产业发展。”来自美国研究机构的统计数据也有力地证明了这一点:大数据能够为美国医疗服务业每年带来3000亿美元的价值,为欧洲的公共管理每年带来2500亿欧元的价值,帮助美国零售业提升60%的净利润,帮助美国制造业降低50%的产品开发和组装成本。
谁率先把握住了大数据的机遇,谁就拥有了创造新的财富的可能,拥有了在激烈的市场竞争中傲视群雄的可能。
因为通过对海量数据的分析,可以发现行业的运行规律、市场的偏好与机会等这些最为宝贵的信息,从而让企业决策变得更加有的放矢。以一瓶价格并不贵、看似不起眼的矿泉水为例,基于对一线销售数据的实时分析与更新进行的经营战略和业务策略调整,居然能够带来销售额从20亿元到百亿元的提升,这正是发生在农夫山泉身上的真实案例。类似的案例越来越多,与此同时,大数据的价值也在各行各业中显露出来。现在,几乎无人会质疑大数据的价值,如何获取价值,则成为人们当前关注的焦点。
如何从沙漠中淘到黄金?
尽管大数据有着巨大的价值,但面对广阔的数字沙漠,如何才能发现埋藏于其中星星点点的黄金呢?
“今天的数据是泛滥的,低密度、杂乱无章、海量的大数据本身,并没有什么太多的价值,只有对大数据的挖掘和处理,才能产生价值。”北京航空航天大学校长、中科院院士怀进鹏向《人民邮电》报记者抛出了如是观点,而这正代表了时下业界的主流思潮。从大数据“不仅如此多,而且变化也如此快”的现状出发,“怎么才能挖掘出有价值的东西”,就成为淘金的必由之路了。对此,怀进鹏认为,必须依靠技术、科学的手段,例如寻找到最优的算法和最简单的算法。
事实上,大数据的兴起,与技术的进步几乎是相伴而生的。正如中国联通信息化事业部副总经理耿向东在接受记者采访时再三强调的那样:“过去,对数据的处理成本比较高,因此当人们在考虑到整体拥有成本这一巨大代价时,就会放弃对数据的处理;现在,不仅数据处理的手段变得丰富起来,而且成本也得到了降低,从而令人们能够方便、规模地应用大数据。”正是因为计算、存储等技术的飞速发展和成本的降低以及软硬件一体机等创新产品的出现,促使过去数据挖掘的两大难题迎刃而解,即存在着无法处理的数据和处理成本过高问题,最终让大数据实现了今天的价值化。
值得注意的是,应对数据挖掘的挑战,将围绕数据价值化的全过程。邬贺铨表示,从数据收集、数据存储到数据处理和结果的可视化呈现这四个环节,大数据技术的运用都面临着挑战。与此同时,一个全新的职业——数据科学家也正在诞生,而《哈佛商业评论》甚至称其为21世纪“最性感”的工作。
谁来保卫我们的“财富”?
与大数据创造的财富相伴的是人们自然而然产生的对于安全的渴望。因为缺少安全保证的财富,并不是真正地“抓”在了手中。可以说,安全是大数据不能回避而且在应用之初就必须给出解决方案的课题。
“没有坏数据,只有对数据的不合理使用。”微软研究及策略部门主管克瑞格·蒙迪用简单的一句话道出了大数据安全的核心所在。今天,当谁都可以利用数据挖掘工具获取、分析数据时,如同“皇冠上明珠”的大数据就面临着谁都可以触摸的危险。在大数据时代,如何避免数据被窃取和不合理使用?答案同样是依靠技术进步。例如,世界经济论坛在2013年2月即提出要通过高端科技来保护隐私,将安全策略的重心从管理转移到对数据的限制使用上来。
确保数据的合理使用,离不开技术和制度的“双管齐下”。例如,世界经济论坛就提出所有对于数据的使用都应该登记,同时对于那些违反规定滥用数据的人要采取处罚措施。而耿向东也表示,中国联通目前正在从技术和制度两方面入手确保数据的安全,例如对用户信息进行加密、为信息传输提供通道保护等。
不容忽视的是,对于“财富”的保护,反过来也会催生出新的商机。大数据正在重构信息安全市场,而那些能够率先切入这场变革的安全厂商,无疑会为未来抢占新的制高点奠定一个好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01