
Python编程中归并排序算法的实现步骤详解
基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序。
归并操作过程:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
上述说法是理论表述,下面用一个实际例子说明:
例如一个无序数组
[6,2,3,1,7]
首先将这个数组通过递归方式进行分解,直到:
[6],[2],[3],[1],[7]
然后开始合并排序,也是用递归的方式进行:
两个两个合并排序,得到:
[2,6],[1,3],[7]
上一步中,其实也是按照本步骤的方式合并的,只不过由于每个list中一个数,不能完全显示过程。下面则可以完全显示过程。
初始:
a = [2,6] b = [1,3] c = []
第1步,顺序从a,b中取出一个数字:2,1 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [2,6] b = [3] c = [1]
第2步,继续从a,b中按照顺序取出数字,也就是重复上面步骤,这次是:2,3 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [6] b = [3] c = [1,2]
第3步,再重复前边的步骤,结果是:
a = [6] b = [] c = [1,2,3]
最后一步,将6追加到c中,结果形成了:
a = [] b = [] c = [1,2,3,6]
通过反复应用上面的流程,实现[1,2,3,6]与[7]的合并
最终得到排序结果
[1,2,3,6,7]
本文列举了三种python的实现方法:
方法1:将前面讲述的过程翻译过来了,略先拙笨
#! /usr/bin/env python
#coding:utf-8
def merge_sort(seq):
if len(seq) ==1:
return seq
else:
middle = len(seq)/2
left = merge_sort(seq[:middle])
right = merge_sort(seq[middle:])
i = 0 #left 计数
j = 0 #right 计数
k = 0 #总计数
while i < len(left) and j < len(right):
if left[i] < right [j]:
seq[k] = left[i]
i +=1
k +=1
else:
seq[k] = right[j]
j +=1
k +=1
remain = left if i<j else right
r = i if remain ==left else j
while r<len(remain):
seq[k] = remain[r]
r +=1
k +=1
return seq
方法2:在按照顺序取数值方面,应用了list.pop()方法,代码更紧凑简洁
#! /usr/bin/env python
#coding:utf-8
def merge_sort(lst): #此方法来自维基百科
if len(lst) <= 1:
return lst
def merge(left, right):
merged = []
while left and right:
merged.append(left.pop(0) if left[0] <= right[0] else right.pop(0))
while left:
merged.append(left.pop(0))
while right:
merged.append(right.pop(0))
return merged
middle = int(len(lst) / 2)
left = merge_sort(lst[:middle])
right = merge_sort(lst[middle:])
return merge(left, right)
方法3:原来在python的模块heapq中就提供了归并排序的方法,只要将分解后的结果导入该方法即可。
#! /usr/bin/env python
#coding:utf-8
from heapq import merge
def merge_sort(seq):
if len(seq) <= 1:
return m
else:
middle = len(seq)/2
left = merge_sort(seq[:middle])
right = merge_sort(seq[middle:])
return list(merge(left, right)) #heapq.merge()
if __name__=="__main__":
seq = [1,3,6,2,4]
print merge_sort(seq)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18