
大数据思维战胜小螺栓
利用数据分析的寄云基于机器学习的监督学习分析法不仅适用于风电企业,也可以应用到更多类似的大型机械生产和运维环境中,为大型机械故障的检测提供了解决思路和方法。
风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。某风电企业是国内排名前三的大型风电设备制造厂商,专业从事大型风力发电机组与关键部件的设计、制造和销售以及风电场的建设、运营和咨询服务,在高海拔风机市场具有显著的优势,已有数百台在线运营,优异的产品性能和良好的售后服务获得了国内众多电力投资商的高度认可,在业内具有良好口碑。
小螺栓,大问题
风力发电机各部件主要通过螺栓连接,每个叶片根部均有50个螺栓固定,因为风机的变桨操作、螺栓零件的自然老化或叶片受到过大应力等因素,叶根螺栓会产生断裂甚至脱落的情形。叶根螺栓的断裂可能导致螺栓脱落掉进风机机舱,造成风机机舱内部机组的损坏,且当一个螺栓出现问题,很容易造成其他螺栓接连断裂,最终将造成叶片掉落,甚至倒塌的严重后果。目前风力发电机叶根螺栓的断裂与否完全依赖人工的排查,然而风场通常设置在如山区、草原、海边或者离岸等偏远的地区,且一个风场通常由数十台风机组成,定期的巡检并不能及时发现,往往在出现严重故障后才会发现。如何能及时发现螺栓断裂避免后续严重故障发生,是该风电企业急需解决的问题。
头疼医头,脚痛医脚不可取
目前,该风电企业主要采用半年一次的人工定期巡检排查故障。然而风场通常设置在偏远的地区,风机检修人员不易安排,且一个风场通常由数十台风机组成,对于逐个风机进行高频率的人工排查非常耗费人力及时间成本。理论上还可以增加传感器来进行检测,如螺栓预紧力传感器、环形垫圈传感器等,通过实时检测每颗螺栓的预紧力来判断有没有螺栓断裂。因为造价昂贵,目前主要应用在核工业、科研等领域,对于单个叶片就有50颗螺栓固定的风机来说,一方面性价比太低,另外也会使得系统更加复杂。
概括来说就是头疼医头脚疼医脚的方式,不仅增加了额外的人力物力,还没有带来更多的延伸利益。寄云科技提出可以通过对其他传感器的测量和监控,比如风机转速、倾角、风速、方向等参数,间接找到叶根螺栓断裂的时间点,及时通知运营人员对断裂螺栓进行更换或者采取其他的维护措施。这种方式不需要额外的传感器就能第一时间发现断裂的螺栓,还能进一步开发实现预测螺栓断裂,以便于运营人员在螺栓断裂之前采取措施,避免螺栓断裂。
大数据思维望闻问切
风力发电机本身有数十个传感器,可返回数百个字段,这些传感器数据反应了风机的各种不同的状态,长期以来,该风电客户已经积累了大量包括叶片角度、叶片变桨速率、轮壳转速及发电机转速等在内的数据。寄云科技提出基于机器学习的监督学习分析法,在不增加传感器的情况下,解决风机叶根螺栓断裂故障的检测问题,降低运营成本。
基于机器学习的监督学习分析法是指从众多的风机周边传感器数据指标中筛选出相关变量,建立风机正常和异常运转模型,确定螺栓断裂发生的时间段,再通过对分类算法阈值的不断学习,逐步找到精准的断裂发生时间点,进而实现对螺栓断裂的精准检测。具体实施步骤如下:
1、特征提取。从大量传感器指标中筛选并提取生成和螺栓断裂有关的变量,计算各项传感器数据在断裂前后的分布差异,筛选其中显著项; 对各项传感器数据进行断裂前后的频域分析,找出显著差异项;
2、建立正常及异常模型。根据风向、风速等外部环境因素相关的传感器数值分布进行工作状态切分,并以检测出螺栓断裂当日之前较小时间窗口数据作为确认异常数据,训练不同状态下的正常/异常判定模型,确认模型对于异常状态的可检测性。
3、确定故障发生时间。在检测出螺栓断裂当日之前的长时间窗口内,利用训练好的判定模型进行检测,寻找正常转变为异常的跳点,即正常转为异常模型的点。
4、分类算法阈值的学习。利用3中捕获的跳点,获得新的异常数据区间,重新训练异常判定模型,对于模型进行优化。重复进行3和4步骤,逐步逼近异常发生的真实、精准的早期时间点。
5、故障检测。基于4的最终分析结果,对螺栓断裂进行检测,再次确定故障的发生时间和位置。在积累了足够的数据和模型之后,进一步基于故障前各个传感器变化的趋势,对叶根螺栓断裂进行检测。
目前,通过寄云基于机器学习的监督学习分析法,确定了正常和故障状态下传感器表现的差异及故障特征,并给出了找到螺栓断裂准确时间的分析方法,后续将继续对既有的分析结果进行验证和积累,逐步实现叶根螺栓断裂的预测,以便于运营人员在断裂前进行设备状态的调整,进而减少运维和设备的维修费用,提高风场的生产效率。利用数据分析的寄云基于机器学习的监督学习分析法不仅适用于风电企业,也可以应用到更多类似的大型机械生产和运维环境中,为大型机械故障的检测提供了解决思路和方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15