京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据思维战胜小螺栓
利用数据分析的寄云基于机器学习的监督学习分析法不仅适用于风电企业,也可以应用到更多类似的大型机械生产和运维环境中,为大型机械故障的检测提供了解决思路和方法。
风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。某风电企业是国内排名前三的大型风电设备制造厂商,专业从事大型风力发电机组与关键部件的设计、制造和销售以及风电场的建设、运营和咨询服务,在高海拔风机市场具有显著的优势,已有数百台在线运营,优异的产品性能和良好的售后服务获得了国内众多电力投资商的高度认可,在业内具有良好口碑。
小螺栓,大问题
风力发电机各部件主要通过螺栓连接,每个叶片根部均有50个螺栓固定,因为风机的变桨操作、螺栓零件的自然老化或叶片受到过大应力等因素,叶根螺栓会产生断裂甚至脱落的情形。叶根螺栓的断裂可能导致螺栓脱落掉进风机机舱,造成风机机舱内部机组的损坏,且当一个螺栓出现问题,很容易造成其他螺栓接连断裂,最终将造成叶片掉落,甚至倒塌的严重后果。目前风力发电机叶根螺栓的断裂与否完全依赖人工的排查,然而风场通常设置在如山区、草原、海边或者离岸等偏远的地区,且一个风场通常由数十台风机组成,定期的巡检并不能及时发现,往往在出现严重故障后才会发现。如何能及时发现螺栓断裂避免后续严重故障发生,是该风电企业急需解决的问题。
头疼医头,脚痛医脚不可取
目前,该风电企业主要采用半年一次的人工定期巡检排查故障。然而风场通常设置在偏远的地区,风机检修人员不易安排,且一个风场通常由数十台风机组成,对于逐个风机进行高频率的人工排查非常耗费人力及时间成本。理论上还可以增加传感器来进行检测,如螺栓预紧力传感器、环形垫圈传感器等,通过实时检测每颗螺栓的预紧力来判断有没有螺栓断裂。因为造价昂贵,目前主要应用在核工业、科研等领域,对于单个叶片就有50颗螺栓固定的风机来说,一方面性价比太低,另外也会使得系统更加复杂。
概括来说就是头疼医头脚疼医脚的方式,不仅增加了额外的人力物力,还没有带来更多的延伸利益。寄云科技提出可以通过对其他传感器的测量和监控,比如风机转速、倾角、风速、方向等参数,间接找到叶根螺栓断裂的时间点,及时通知运营人员对断裂螺栓进行更换或者采取其他的维护措施。这种方式不需要额外的传感器就能第一时间发现断裂的螺栓,还能进一步开发实现预测螺栓断裂,以便于运营人员在螺栓断裂之前采取措施,避免螺栓断裂。
大数据思维望闻问切
风力发电机本身有数十个传感器,可返回数百个字段,这些传感器数据反应了风机的各种不同的状态,长期以来,该风电客户已经积累了大量包括叶片角度、叶片变桨速率、轮壳转速及发电机转速等在内的数据。寄云科技提出基于机器学习的监督学习分析法,在不增加传感器的情况下,解决风机叶根螺栓断裂故障的检测问题,降低运营成本。
基于机器学习的监督学习分析法是指从众多的风机周边传感器数据指标中筛选出相关变量,建立风机正常和异常运转模型,确定螺栓断裂发生的时间段,再通过对分类算法阈值的不断学习,逐步找到精准的断裂发生时间点,进而实现对螺栓断裂的精准检测。具体实施步骤如下:
1、特征提取。从大量传感器指标中筛选并提取生成和螺栓断裂有关的变量,计算各项传感器数据在断裂前后的分布差异,筛选其中显著项; 对各项传感器数据进行断裂前后的频域分析,找出显著差异项;
2、建立正常及异常模型。根据风向、风速等外部环境因素相关的传感器数值分布进行工作状态切分,并以检测出螺栓断裂当日之前较小时间窗口数据作为确认异常数据,训练不同状态下的正常/异常判定模型,确认模型对于异常状态的可检测性。
3、确定故障发生时间。在检测出螺栓断裂当日之前的长时间窗口内,利用训练好的判定模型进行检测,寻找正常转变为异常的跳点,即正常转为异常模型的点。
4、分类算法阈值的学习。利用3中捕获的跳点,获得新的异常数据区间,重新训练异常判定模型,对于模型进行优化。重复进行3和4步骤,逐步逼近异常发生的真实、精准的早期时间点。
5、故障检测。基于4的最终分析结果,对螺栓断裂进行检测,再次确定故障的发生时间和位置。在积累了足够的数据和模型之后,进一步基于故障前各个传感器变化的趋势,对叶根螺栓断裂进行检测。
目前,通过寄云基于机器学习的监督学习分析法,确定了正常和故障状态下传感器表现的差异及故障特征,并给出了找到螺栓断裂准确时间的分析方法,后续将继续对既有的分析结果进行验证和积累,逐步实现叶根螺栓断裂的预测,以便于运营人员在断裂前进行设备状态的调整,进而减少运维和设备的维修费用,提高风场的生产效率。利用数据分析的寄云基于机器学习的监督学习分析法不仅适用于风电企业,也可以应用到更多类似的大型机械生产和运维环境中,为大型机械故障的检测提供了解决思路和方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27