
优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.信息增益
划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:
其中p(xi)为该分类的概率。
熵,即信息的期望值为:
计算信息熵的代码如下:
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
可以根据信息熵,按照获取最大信息增益的方法划分数据集。
2.划分数据集
划分数据集就是将所有符合要求的元素抽出来。
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
3.选择最好的数据集划分方式
信息增益是熵的减少或者是信息无序度的减少。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表
allValue = set(allValue)#最快得到列表中唯一元素值的方法
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
4.递归创建决策树
结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
生成决策树:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
5.测试算法——使用决策树分类
同样采用递归的方式得到分类结果。
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
6.完整代码如下
import numpy as np
import math
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no'],]
label = ['no surfacing','flippers']
return dataSet,label
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]
allValue = set(allValue)
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
if __name__ == "__main__":
dataset,label = createDataSet()
myTree = createTree(dataset,label)
a = [1,1]
print(classify(myTree,label,a))
7.编程技巧
extend与append的区别
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中
列表推到
创建新列表的方式
allValue = [example[i] for example in dataSet]
提取列表中唯一的元素
allValue = set(allValue)
列表/元组排序,sorted()函数
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
列表的复制
labelsCopy = labels[:]
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18