
优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.信息增益
划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:
其中p(xi)为该分类的概率。
熵,即信息的期望值为:
计算信息熵的代码如下:
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
可以根据信息熵,按照获取最大信息增益的方法划分数据集。
2.划分数据集
划分数据集就是将所有符合要求的元素抽出来。
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
3.选择最好的数据集划分方式
信息增益是熵的减少或者是信息无序度的减少。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表
allValue = set(allValue)#最快得到列表中唯一元素值的方法
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
4.递归创建决策树
结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
生成决策树:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
5.测试算法——使用决策树分类
同样采用递归的方式得到分类结果。
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
6.完整代码如下
import numpy as np
import math
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no'],]
label = ['no surfacing','flippers']
return dataSet,label
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]
allValue = set(allValue)
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
if __name__ == "__main__":
dataset,label = createDataSet()
myTree = createTree(dataset,label)
a = [1,1]
print(classify(myTree,label,a))
7.编程技巧
extend与append的区别
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中
列表推到
创建新列表的方式
allValue = [example[i] for example in dataSet]
提取列表中唯一的元素
allValue = set(allValue)
列表/元组排序,sorted()函数
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
列表的复制
labelsCopy = labels[:]
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28