京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
1.信息增益
划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。
熵定义为信息的期望,符号xi的信息定义为:
其中p(xi)为该分类的概率。
熵,即信息的期望值为:
计算信息熵的代码如下:
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
可以根据信息熵,按照获取最大信息增益的方法划分数据集。
2.划分数据集
划分数据集就是将所有符合要求的元素抽出来。
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
3.选择最好的数据集划分方式
信息增益是熵的减少或者是信息无序度的减少。
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表
allValue = set(allValue)#最快得到列表中唯一元素值的方法
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
4.递归创建决策树
结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。
当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
生成决策树:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
5.测试算法——使用决策树分类
同样采用递归的方式得到分类结果。
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
6.完整代码如下
import numpy as np
import math
import operator
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no'],]
label = ['no surfacing','flippers']
return dataSet,label
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0
for key in labelCounts:
shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)
return shannonEnt
def splitDataSet(dataSet,axis,value):
retDataset = []
for featVec in dataSet:
if featVec[axis] == value:
newVec = featVec[:axis]
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
return retDataset
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
bestInfoGain = 0
bestFeature = -1
baseEntropy = calcShannonEnt(dataSet)
for i in range(numFeatures):
allValue = [example[i] for example in dataSet]
allValue = set(allValue)
newEntropy = 0
for value in allValue:
splitset = splitDataSet(dataSet,i,value)
newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for value in classList:
if value not in classCount: classCount[value] = 0
classCount[value] += 1
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return classCount[0][0]
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
labelsCopy = labels[:]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeature = chooseBestFeatureToSplit(dataSet)
bestLabel = labelsCopy[bestFeature]
myTree = {bestLabel:{}}
featureValues = [example[bestFeature] for example in dataSet]
featureValues = set(featureValues)
del(labelsCopy[bestFeature])
for value in featureValues:
subLabels = labelsCopy[:]
myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)
return myTree
def classify(inputTree,featLabels,testVec):
currentFeat = list(inputTree.keys())[0]
secondTree = inputTree[currentFeat]
try:
featureIndex = featLabels.index(currentFeat)
except ValueError as err:
print('yes')
try:
for value in secondTree.keys():
if value == testVec[featureIndex]:
if type(secondTree[value]).__name__ == 'dict':
classLabel = classify(secondTree[value],featLabels,testVec)
else:
classLabel = secondTree[value]
return classLabel
except AttributeError:
print(secondTree)
if __name__ == "__main__":
dataset,label = createDataSet()
myTree = createTree(dataset,label)
a = [1,1]
print(classify(myTree,label,a))
7.编程技巧
extend与append的区别
newVec.extend(featVec[axis+1:])
retDataset.append(newVec)
extend([]),是将列表中的每个元素依次加入新列表中
append()是将括号中的内容当做一项加入到新列表中
列表推到
创建新列表的方式
allValue = [example[i] for example in dataSet]
提取列表中唯一的元素
allValue = set(allValue)
列表/元组排序,sorted()函数
classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
列表的复制
labelsCopy = labels[:]
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15