京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python内置模块logging用法实例分析
本文实例讲述了Python内置模块logging用法。分享给大家供大家参考,具体如下:
1、将日志直接输出到屏幕
import logging
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
# 默认情况下,logging将日志打印到屏幕,日志级别为WARNING;
#output====================================
# WARNING:root:This is warning message

2.通过logging.basicConfig函数对日志的输出格式及方式做相关配置
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='myapp.log',
filemode='w')
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
#./myapp.log文件中内容为:
#Sun, 24 May 2009 21:48:54 demo2.py[line:11] DEBUG This is debug message
#Sun, 24 May 2009 21:48:54 demo2.py[line:12] INFO This is info message
#Sun, 24 May 2009 21:48:54 demo2.py[line:13] WARNING This is warning message
logging.basicConfig参数:
#logging.basicConfig函数各参数:
filename: 指定日志文件名
filemode: 和file函数意义相同,指定日志文件的打开模式,'w'或'a'
format: 指定输出的格式和内容,format可以输出很多有用信息,如上例所示:
%(levelno)s: 打印日志级别的数值
%(levelname)s: 打印日志级别名称
%(pathname)s: 打印当前执行程序的路径,其实就是sys.argv[0]
%(filename)s: 打印当前执行程序名
%(funcName)s: 打印日志的当前函数
%(lineno)d: 打印日志的当前行号
%(asctime)s: 打印日志的时间
%(thread)d: 打印线程ID
%(threadName)s: 打印线程名称
%(process)d: 打印进程ID
%(message)s: 打印日志信息
datefmt: 指定时间格式,同time.strftime()
level: 设置日志级别,默认为logging.WARNING
stream: 指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略
3、将日志同时输出到多个Handler
先定义一个住handler,并使用addHander()添加到主handler,实现日志输出到多个handler.
a、同时输出到文件和屏幕
import logging
#设置一个basicConfig只能输出到一个Handler
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='myapp.log',
filemode='w')
#定义一个StreamHandler,将INFO级别或更高的日志信息打印到标准错误,并将其添加到当前的日志处理对象#
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
#输出到文件的log级别为debug,输出到stream的log级别为info
logging.debug('This is debug message')
logging.info('This is info message')
logging.warning('This is warning message')
b、添加一个handler:输出到文件,并根据文件大小滚动存储
在a的基础上添加一个handler
from logging.handlers import RotatingFileHandler
#定义一个RotatingFileHandler,最多备份5个日志文件,每个日志文件最大10M
Rthandler = RotatingFileHandler('myapp.log', maxBytes=10*1024*1024,backupCount=5)
Rthandler.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
Rthandler.setFormatter(formatter)
logging.getLogger('').addHandler(Rthandler)
logging几种Handler类型:
logging.StreamHandler(默认): 日志输出到流,可以是sys.stderr、sys.stdout或者文件
logging.FileHandler: 日志输出到文件
logging.handlers.RotatingFileHandler 日志输出到文件,基于文件大小滚动存储日志
logging.handlers.TimedRotatingFileHandler 日志输出到文件,基于时间周期滚动存储日志
logging.handlers.SocketHandler: 远程输出日志到TCP/IP sockets
logging.handlers.DatagramHandler: 远程输出日志到UDP sockets
logging.handlers.SMTPHandler: 远程输出日志到邮件地址
logging.handlers.SysLogHandler: 日志输出到syslog
logging.handlers.NTEventLogHandler: 远程输出日志到Windows NT/2000/XP的事件日志
logging.handlers.MemoryHandler: 日志输出到内存中的制定buffer
logging.handlers.HTTPHandler: 通过"GET"或"POST"远程输出到HTTP服务器
4、通过配置文件配置logger
a、定义配置文件logger.conf
#logger.conf
###############################################
[loggers]
keys=root,example01,example02
[logger_root]
level=DEBUG
handlers=hand01,hand02
[logger_example01]
handlers=hand01,hand02
qualname=example01
propagate=0
[logger_example02]
handlers=hand01,hand03
qualname=example02
propagate=0
###############################################
[handlers]
keys=hand01,hand02,hand03
[handler_hand01]
class=StreamHandler
level=INFO
formatter=form02
args=(sys.stderr,)
[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form01
args=('myapp.log', 'a')
[handler_hand03]
class=handlers.RotatingFileHandler
level=INFO
formatter=form02
args=('myapp.log', 'a', 10*1024*1024, 5)
###############################################
[formatters]
keys=form01,form02
[formatter_form01]
format=%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s
datefmt=%a, %d %b %Y %H:%M:%S
[formatter_form02]
format=%(name)-12s: %(levelname)-8s %(message)s
datefmt=
b、logging.config获取配置
import logging
import logging.config
logging.config.fileConfig("logger.conf")
logger = logging.getLogger("example01")
logger.debug('This is debug message')
logger.info('This is info message')
logger.warning('This is warning message')
import logging
import logging.config
logging.config.fileConfig("logger.conf")
logger = logging.getLogger("example02")
logger.debug('This is debug message')
logger.info('This is info message')
logger.warning('This is warning message')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22