
详解Python自建logging模块
简单使用
最开始,我们用最短的代码体验一下logging的基本功能。
import logging
logger = logging.getLogger()
logging.basicConfig()
logger.setLevel('DEBUG')
logger.debug('logsomething')
#输出
out>>DEBG:root:logsomething
第一步,通过logging.getLogger函数,获取一个loger对象,但这个对象暂时是无法使用的。
第二步,logging.basicConfig函数,进行一系列默认的配置,包括format、handler等。
第三步,logger调用setLevel函数定义日志级别为DEBUG 最后,调用debug函数,输出一条debug级别的message,显示在了标准输出上。 logging中的日志级别
logging在生成日志的时候,有一个日志级别的机制,默认有以下几个日志级别:
CRITICAL = 50
ERROR = 40
WARNING = 30
INFO 20
DEBUG = 10
NOTEST = 0
每一个logger对象,都有一个日志级别,它只会输出高于它level的日志。如果一个logger的level是INFO,那么调用logger.debug()是无法输出日志的,而logger.warning()能够输出。
一般来说,以上的6个日志级别完全满足我们日常使用了。
logging中的基础类
logging是python的一个基础模块,它在python中的源码位置如下:
#主干代码
/usr/lib/python2.7/logging/__init__.py
#扩展的handler和config
/usr/lib/pyhon2.7/logging/config.py
/usr/lib/python2.7/loging/handlers.py
组成logging的主干的几个基础类都在__init__.py中:
第一个基础类LogRecord
一个LogRecord对象,对应了日志中的一行数据。通常包含:时间、日志级别、message信息、当前执行的模块、行号、函数名...这些信息都包含在一个LogRecord对象里。
LogRecord对象可以想象成一个大字典:
class LogRecord(object):
#代表一条日志的类
def getMessage(self):
#获取self.msg
def markLogRecord(dict):
#这个方法很重要,生成一个空的LogRecord,然后通过一个字典,直接更新LogReocrd中的成员变量
rv = LogRecord(None, None, "", 0, "", (), None, None)
rv.__dict__.update(dict)
return rv
第二个基础类Formatter
Formatter对象是用来定义日志格式的,LogRecord保存了很多信息,但是打印日志的时候我们只需要其中几个,Formatter就提供了这样的功能,它依赖于python的一个功能:
#通过字典的方式,输出格式化字符串
print('%(name)s:%(num)d'%{'name':'my_name', 'num' : 100})
out >>>my_name:100
如果说LogRecord是后面的那个字典,那么Formatter就是前面的那个格式字符串...的抽象
重要的代码如下:
class Formatter(object):
def __init__(self, fmt=None, datefmt = None):
if fmt:
self._fmt = fmt
else:
#默认的format
self._fmt = "%(message)s"
def format(self, record)
#使用self._fmt进行格式化
s = self._fmt %record.__dict__
return s
第三个基础类Filter和Filterer
Filter类,功能很简单。Filter.filter()函数传入一个LogRecord对象,通过筛选返回1,否则返回0.从代码中可以看到,其实是对LogRecord.name的筛选。
Filterer类中有一个Filter对象的列表,它是一组Filter的抽象。
重要的代码如下:
class Filter(object):
def __init__(self, name=''):
self.name = name
self.nlen = len(name)
def filter(self, record):
#返回1表示record通过,0表示record不通过
if self.nlen == 0:
return 1
elif self.name == record.name:
return 1
#record.name不是以filter开头
elif record.name.find(self.name, 0, self.nlen) != 0:
return 0
#最后一位是否为
return (record.name[self.nlen] == '.')
class Filterer(object):
#这个类其实是定义了一个self.filters = []的列表管理多个filter
def addFilter(self, filter):
def removefilter(self, filter):
def filter(self, record):
#使用列表中所有的filter进行筛选,任何一个失败都会返回0
#例如:
#filter.name = 'A', filter2.name='A.B', filter2.name = 'A, B, C'
#此时record.name = 'A,B,C,D'这样的record才能通过所有filter的筛选
logging中的高级类
有了以上三个基础的类,就可以拼凑一些更重要的高级类了,高级类可以实现logging的重要功能。
Handler——抽象了log的输出过程 Handler类继承自Filterer。Handler类时log输出这个过程的抽象。
同时Handler类具有一个成员变量self.level,在第二节讨论的日志级别的机制,就是在Handler中实现的。
Handler有一个emit(record)函数,这个函数负责输出log,必须在Handler的子类中实现。
重要代码如下:
class Handler(Filterer):
def __init__(self, level = NOTEST)
#handler必须有level属性
self.level = _checkLevel(level)
def format(self, record):
#使用self.formatter, formattercord
def handler(self, record):
#如果通过filter的筛选,则emit这条log
rv = self.filter(record)
self.emit(record)
def emit(self, record):
#等待子类去实现
接下来看两个简单的handler的子类,其中在logging源码中,有一个handler.py专门定义了很多复杂的handler,有的可以将log缓存在内存中,有的可以将log做rotation等。
StreamHandler
最简单的handler实现,将log写入一个流,默认的stream是sys.stderr
重要的代码如下:
class StreamHandler(Handler):
def __init__(self, stream = None):
if stream is None:
stream = sys.stderr
self.stream = stream
def emit(self, record):
#将record的信息写入流
#处理一些编码的异常
fs = '%s\n' #每条日志都有换行
stream = self.stream
stream.write(fs%msg)
FileHandler
将log输出到文件的handler,继承StreamHandler
重要代码如下:
class FileHandler(StreamHandler):
def __init__(self, filename, mode='a')
#append方式打开一个文件
StreamHandler.__init__(self, self._open())
def emit(self, record):
#和streamhandler保持一致
StreamHandler.emit(self, record)
Logger——一个独立的log管道
什么是logger?
+ logger类继承自Filterer,
+ logger对象有logger.level日志级别
+ logger对象控制多个handler:logger.handlers = []
+ logger对象之间存在福字关系
简单的来说,logger这个类,集中了我们以上所有的LogRecord、Filter类、Formatter类、handler类。首先,logger根据输入生成一个LogRecord读写,经过Filter和Formatter之后,再通过self.handlers列表中的所有handler,把log发送出去。
一个logger中可能有多个handler,可以实现把一份log放到任意的位置。
class Logger(Filterer):
def __init__(self, name, level=NOTEST)
#handler列表
self.handlers = []
self.level = _checklevel(level)
def addHandler(self, hdlr):
def removeHandler(self, hdlr):
def _log(self, level, msg, args, exc_info=None, extra=None):
#在_log函数中创建了一个LogRecord对象
record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
#交给handle函数
self.handle(record)
def handle(self, reord):
#进行filter,然后调用callHandlers
if(not self.disabled) and self.filter(record):
self.callHandlers(record)
def callHandlers(self, record):
#从当前logger到所有的父logger,递归的handl传入的record
c = self
while c:
for hdlr in c.handlers:
hdlr.handle(record) #进入handler的emit函数发送log
....
c = c.parent
LoggerAdapter——对标准logger的一个扩展
LogRecord这个大字典中提供的成员变量已经很多,但是,如果在输出log时候仍然希望能够夹带一些自己想要看到的更多信息,例如产生这个log的时候,调用某些函数去获得其他信息,那么就可以把这些添加到Logger中,LoggerAdapter这个类就起到这个作用。
LoggerAdapter这个类很有意思,如果不做什么改动,那么LoggerAdapter类和Logger并没有什么区别。LoggerAdapter只是对Logger类进行了一下包装。
LoggerAdapter的用法其实是在它的成员函数process()的注释中已经说明了:
def process(self, msg, kwargs):
'''
Normally,you'll only need to overwrite this one method in a LoggerAdapter subclass for your specific needs.
'''
也就是说重写process函数,以下是一个例子:
import logging
import random
L=logging.getLogger('name')
#定义一个函数,生成0~1000的随机数
def func():
return random.randint(1,1000)
class myLogger(logging.LoggerAdapter):
#继承LoggerAdapter,重写process,生成随机数添加到msg前面
def process(self,msg,kwargs):
return '(%d),%s' % (self.extra['name'](),msg) ,kwargs
#函数对象放入字典中传入
LA=myLogger(L,{'name':func})
#now,do some logging
LA.debug('some_loging_messsage')
out>>DEBUG:name:(167),some_loging_messsage
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18