
量化投资、数据挖掘及matlab入门
量化投资模型的构建需要处理大量的数据,建立在对历史信息统计分析的基础上。数据挖掘(Data Mining)也称为数据开采、数据采掘等,就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的,但是又潜在有用的信息和知识的过程。可以说,数据挖掘技术是量化模型产生的主要技术和手段。
量化投资和数据挖掘
数据挖掘和传统数据分析(查询,报表,OLAP)的本质区别在于其在没有明确假设的前提下去挖掘信息,发现知识。在发现知识的过程中需要用到数据库、统计学、应用数学、机器学习、可视化、信息科学、程序开发及其他学科的内容。数据挖掘的核心在于对输入和输出数据进行训练,得到模型,使模型能够最大程度上刻画数据从输入到输出之间的关系。然后利用该模型,对于新的输入预测其输出。目前数据挖掘技术主要应用在宏观经济分析,股票估值,量化选股,量化择时,算法交易等方面。数据挖掘的内容主要集中在六个方面, 关联、回归、分类、聚类、预测和诊断。
啤酒和尿布是典型的关联关系。若两个或多个变量的取值之间存在规律性,就称为关联。关联可以分为简单关联,时序关联和因果关联。
回归是确定两种或两种变量之间相互定量关系的一种统计方法,是数据挖掘中最为基础的方法,也是应用领域和场景最多的方法。
分类问题,在人们的日常生活中也经常会遇到,如垃圾分类投放,分类收纳衣物等等。数据挖掘中的分类问题也是类似,根据事物的数据层面特征将其归于不同的类别。
聚类分析,是根据“物以类聚”的原理,将事物归于不同的类或者簇中的一个过程,使得同一簇中的对象具有尽可能大的相似性,而不同簇中的对象具有尽可能大的相异性。和分类问题的不同在于聚类问题事先不知道类别,而分类问题事先已经定义好了类别。
预测基于历史数据建立模型,用来推算将来。
诊断的对象是离散点或称为孤立点。离散点代表了异常状态,包含了非常重要的信息,可以被用来发现欺诈行为,定位病灶等。
对于这六个方面内容的典型算法归纳如下,由于诊断主要基于其他5个方面的问题,在此并未列出其涉及的具体算法。
数据挖掘的过程主要包含六个阶段,如下图所示。实施数据挖掘的第一步是确定目标,要确定数据挖掘的目标,就必须了解数据和相关业务。数据挖掘的基础是数据,因此数据准备是数据挖掘中耗时最多的环节,包含数据选择,质量分析,预处理三个子环节。数据探索是对数据的初步研究,可以从描述统计,可视化等方面展开。模型建立是数据挖掘的核心,在这一步要确定具体的数据挖掘算法,训练出模型参数。模型评估阶段需要对数据挖掘过程进行一次全面的回顾,目的在于判断是否还存在一些重要的商业问题仍未得到充分的考虑。模型部署用于体现数据挖掘的成果,将其部署到实际业务系统中,进行知识消化。
工欲善其事,必先利其器。下面对数据挖掘常用的工具进行一下总结。工具眼花缭乱,各有长短,适合自己的便是最好,在后面的学习研究中,matlab就是我们的绝世好剑。
初识Matlab
Matlab软件是一种用于数值计算、可视化及编程的高级语言和交互式环境,支持命令行模式,脚本模式和面向对象模型。本例中,我们使用命令行模式来评估单只股票的风险。股票风险度量有各种各样的方法,为简便起见,本例使用最大回撤来定量度量单只股票的风险。
OS: win7 64bits
Matlab: R2012b 64bits
(1). 打开matlab,导入股票数据文件。
(2). 成功导入后,弹出如下窗口,点击“Import Selection", 将数据导入工作区(matlab运行内存)
(3). 回到软件主界面,可以看到工作区(workspace)已经显示了导入表格的字段内容,选中“DateNum”和“Pclose”两个字段,点击“plot”图标,会绘制出股价随时间序列变化的曲线,这个点击动作实际上是在命令行中执行了 plot(DateNum,Pclose);figure(gcf)命令。
(4). 在命令行中执行risk = maxdrawdown(Pclose)得到该只股票收盘价的最大回撤,并赋值给risk,值为0.1155,也就是该只股票从前一高点到最低点的最大跌幅为11.55%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22