京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量化投资、数据挖掘及matlab入门
量化投资模型的构建需要处理大量的数据,建立在对历史信息统计分析的基础上。数据挖掘(Data Mining)也称为数据开采、数据采掘等,就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的,但是又潜在有用的信息和知识的过程。可以说,数据挖掘技术是量化模型产生的主要技术和手段。
量化投资和数据挖掘
数据挖掘和传统数据分析(查询,报表,OLAP)的本质区别在于其在没有明确假设的前提下去挖掘信息,发现知识。在发现知识的过程中需要用到数据库、统计学、应用数学、机器学习、可视化、信息科学、程序开发及其他学科的内容。数据挖掘的核心在于对输入和输出数据进行训练,得到模型,使模型能够最大程度上刻画数据从输入到输出之间的关系。然后利用该模型,对于新的输入预测其输出。目前数据挖掘技术主要应用在宏观经济分析,股票估值,量化选股,量化择时,算法交易等方面。数据挖掘的内容主要集中在六个方面, 关联、回归、分类、聚类、预测和诊断。
啤酒和尿布是典型的关联关系。若两个或多个变量的取值之间存在规律性,就称为关联。关联可以分为简单关联,时序关联和因果关联。
回归是确定两种或两种变量之间相互定量关系的一种统计方法,是数据挖掘中最为基础的方法,也是应用领域和场景最多的方法。
分类问题,在人们的日常生活中也经常会遇到,如垃圾分类投放,分类收纳衣物等等。数据挖掘中的分类问题也是类似,根据事物的数据层面特征将其归于不同的类别。
聚类分析,是根据“物以类聚”的原理,将事物归于不同的类或者簇中的一个过程,使得同一簇中的对象具有尽可能大的相似性,而不同簇中的对象具有尽可能大的相异性。和分类问题的不同在于聚类问题事先不知道类别,而分类问题事先已经定义好了类别。
预测基于历史数据建立模型,用来推算将来。
诊断的对象是离散点或称为孤立点。离散点代表了异常状态,包含了非常重要的信息,可以被用来发现欺诈行为,定位病灶等。
对于这六个方面内容的典型算法归纳如下,由于诊断主要基于其他5个方面的问题,在此并未列出其涉及的具体算法。
数据挖掘的过程主要包含六个阶段,如下图所示。实施数据挖掘的第一步是确定目标,要确定数据挖掘的目标,就必须了解数据和相关业务。数据挖掘的基础是数据,因此数据准备是数据挖掘中耗时最多的环节,包含数据选择,质量分析,预处理三个子环节。数据探索是对数据的初步研究,可以从描述统计,可视化等方面展开。模型建立是数据挖掘的核心,在这一步要确定具体的数据挖掘算法,训练出模型参数。模型评估阶段需要对数据挖掘过程进行一次全面的回顾,目的在于判断是否还存在一些重要的商业问题仍未得到充分的考虑。模型部署用于体现数据挖掘的成果,将其部署到实际业务系统中,进行知识消化。
工欲善其事,必先利其器。下面对数据挖掘常用的工具进行一下总结。工具眼花缭乱,各有长短,适合自己的便是最好,在后面的学习研究中,matlab就是我们的绝世好剑。
初识Matlab
Matlab软件是一种用于数值计算、可视化及编程的高级语言和交互式环境,支持命令行模式,脚本模式和面向对象模型。本例中,我们使用命令行模式来评估单只股票的风险。股票风险度量有各种各样的方法,为简便起见,本例使用最大回撤来定量度量单只股票的风险。
OS: win7 64bits
Matlab: R2012b 64bits
(1). 打开matlab,导入股票数据文件。
(2). 成功导入后,弹出如下窗口,点击“Import Selection", 将数据导入工作区(matlab运行内存)
(3). 回到软件主界面,可以看到工作区(workspace)已经显示了导入表格的字段内容,选中“DateNum”和“Pclose”两个字段,点击“plot”图标,会绘制出股价随时间序列变化的曲线,这个点击动作实际上是在命令行中执行了 plot(DateNum,Pclose);figure(gcf)命令。
(4). 在命令行中执行risk = maxdrawdown(Pclose)得到该只股票收盘价的最大回撤,并赋值给risk,值为0.1155,也就是该只股票从前一高点到最低点的最大跌幅为11.55%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08