京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中的list和array的不同之处
python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同。
在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了
例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu。
1、numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型
[python] view plain copy
list1=[1,2,3,'a']
print list1
a=np.array([1,2,3,4,5])
b=np.array([[1,2,3],[4,5,6]])
c=list(a) # array到list的转换
print a,np.shape(a)
print b,np.shape(b)
print c,np.shape(c)
运行结果:
[python] view plain copy
[1, 2, 3, 'a'] # 元素数据类型不同,并且用逗号隔开
[1 2 3 4 5] (5L,) # 一维数组,类型用tuple表示
[[1 2 3]
[4 5 6]] (2L, 3L)
[1, 2, 3, 4, 5] (5L,)
注意:
如果a是array,结果是:[1 2 3 4 5]
如果a是list,结果是:[1, 2, 3, 4, 5]
2、array的创建:参数既可以是list,也可以是元组.使用对应的属性shape直接得到形状
a=np.array((1,2,3,4,5))# 参数是元组
b=np.array([6,7,8,9,0])# 参数是list
c=np.array([[1,2,3],[4,5,6]])# 参数二维数组
print a
print b
print c
print c.shape
结果:
[1 2 3 4 5]
[6 7 8 9 0]
[[1 2 3]
[4 5 6]]
(2L, 3L)
3、也可以直接改变属性array的形状,-1代表的是自己推算。这里并不是T, reshape(())也可以
1)
c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
print c.shape # (3L, 4L)
c.shape=2,-1
print c.shape
c.shape=4,-1
print c.shape
结果:
(3L, 4L)
(2L, 6L)
(4L, 3L)
2)
c1 = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
d=c1.reshape((4,-1))#d 已变成4 行3 列
d[1:2]=66 #把第1行所有元素变为66
print d
d[1:3]=66 #把第1,2 两行所有元素变为66
print d
结果:
[[ 1 2 3]
[66 66 66]
[ 6 7 7]
[ 8 9 10]]
[[ 1 2 3]
[66 66 66]
[66 66 66]
[ 8 9 10]]
X1=np.array([[1,2],[3,5],[1,9],[3,4],[1,8],[3,14],[1,10],[31,4]])
nn = np.array([2,3,5,7])
print X1[nn] #显示第2,3,5,7 行的内容
结果:
[[ 1 9]
[ 3 4]
[ 3 14]
[31 4]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22