京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python切片操作实例分析
本文实例讲述了Python切片操作。分享给大家供大家参考,具体如下:
在很多编程语言中,针对字符串提供了截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片操作就可以完成。
切片操作符是序列名后跟一个方括号,方括号中有3个可选的数字,并用冒号分割,数是可选的,而冒号是必须的。
切片操作符中的第一个数表示切片开始的位置,第二个数表示切片到哪里结束,第三个数表示切片步长。
如果不指定第一个数,Python就从序列首开始。如果没有指定第二个数,则Python会停止在序列尾。如果没有指定第三个数,则步长默认为1。
注意,返回的序列从开始位置开始 ,刚好在 结束 位置之前结束。即开始位置是包含在序列切片中的,而结束位置被排斥在切片外,构成了一个前闭后开区间 [ )
例如:
1》正向切片(步长是正整数)
>>> s='love python!'
>>> s[2:9:2] #切片区间 [2,9),步长是2
'v yh'
>>> s[:5] #切片区间 [0,5),步长默认是1
'love '
>>> s[4:] #切片区间 [4,len(s)),步长默认是1
' python!'
>>> s[:] #切片区间 [0,len(s)),步长是1,返回整个序列的拷贝
'love python!'
>>> s[::2] #切片区间是 [0,len(s)),步长是2
'lv yhn'
Python序列倒数第一个元素的索引是-1,python同样支持负数索引切片。如:
>>> s
'love python!'
>>> s[-5:-2] #切片区间 [-5,-2),步长默认是1
'tho'
>>> s[:-1] #除了最后一个元素,其他的元素全部返回
'love python'
>>> s[-8::2] #切片区间 [-8,-1],步长是2
' yhn'
2》反向切片(步长是负数),如:
>>> s
'love python!'
>>> s[9:2:-1]
'ohtyp e'
>>> s[-1::-1] #返回序列的逆序序列
'!nohtyp evol'
>>> s[::-1] #返回序列的逆序序列
'!nohtyp evol'
另外,切片除了可以作用于字符串,也可以作用于元组和列表。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15