
如何用stata做稳健回归
大量的线性回归模型是基于最小二乘法实现的,但其仍存在一些局限性。比如说,样本点出现许多异常点时,传统的最小二乘法将不再适用,此时则可以使用稳健回归(robust regression)代替最小二乘法。
操作
下面的稳健回归使用的是犯罪数据,该数据来自Alan Agresti和Barbara Finlay的《社会科学统计方法》。变量包括美国各州编号(sid)、州名(state)、每10万人犯罪案件数量(crime)、生活在贫困线以下人口的百分比(poverty)和单亲人口百分比(single)等。我们选择使用贫穷率和单状况来预测犯罪率。
获取数据
use https://stats.idre.ucla.edu/stat/stata/dae/crime, clear导入数据,并描述各个变量的统计结果,输出表格中包含样本容量、平均数、标准差、最小值和最大值。
OLS回归
在稳健回归之前,我们先进行OLS回归,输出结果如下。
样本点分析
首先我们通过“lvr2plot”绘制残差杠杆图,通过识别离群点和高杠杆值点(杠杆点)进而识别强影响点。假如存在杠杆点的话,要确定哪些是bad leverage point,对于这些离群点我们要评估它对拟合模型的影响。
由图中我们可以看出,dc、ms、fl三个点残差较大或者杠杆值比较高。库克距离是杠杆值与残差大小的综合效应,一般而言,库克距离大于1,则可认为该样本点为强影响点。接下来我们计算各点的库克距离(Cook’s Distance),并输出结果。
由结果可以看出,dc点库克距离大于1,表明dc这一样本点对于回归结果会产生较强的影响,在之后的稳健回归中我们会对dc点进行特殊处理。
接下来我们分析数据的残差。使用rstandard这一命令,它表示标准化残差的绝对值。
稳健回归
我们使用“rreg”命令进行稳健回归,并输出结果如下。
对比最开始的OLS回归,我们发现两者差异较大。并且稳健回归中的样本点数量是50,OLS回归中为51,这是因为经过前面的分析,由于dc这一异常值点对回归结果影响较强,因此在稳健回归中我们将其舍去。下面的操作表明在稳健回归中,dc样本点所占权重为零。
下面的命令展示了其他权重较小的观察值,一般而言,残差较大的观察值权重较小,例如我们之前提到的ms点。在OLS回归中,所有样本点的权重都是1,因此稳健回归中越多的样本点权重是1,其回归结果与OLS结果越相近。
我们还可以通过绘制圆圈的方式形象地展现这一关系。下图中横坐标表示单亲率,纵坐标表示犯罪率,每一个圆圈表示一个样本点,圆心为该样本点在坐标中的位置,圆圈直径越大,表示该样本点权重越大。
拓展
我们在稳健回归分析之后,可以使用许多后续估计命令,比如test、margin等。下面的操作是我们控制贫困率之后,在不同的单亲率下预测犯罪率。我们发现,随着单亲率的提高,犯罪率也相应地上升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09