京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Stata二维图的坐标轴选择
在Stata中,我们经常使用graph twoway命令绘制散点图、折线图、条形图等二维图。如果我们在绘图时,需要使用多个坐标轴,这时应该怎么办呢??→_→这时就需要用到坐标轴的选项(axis_choice_options)啦!
该选项的基本语法如下:
yaxis(# [#...]), 1≤ # ≤ 9
xaxis(# [#...]), 1≤ # ≤ 9
默认(缺省)情况下,Stata指定一个纵坐标轴和一个横坐标轴,即yaxis(1)和xaxis(1)。Stata最多允许在横纵两个方向各设置9个坐标轴。例如:yaxis(1 2),此时,纵轴的选择默认为先左后右,即第一个纵轴在图形左侧,第二个纵轴在图形右侧;xaxis(1 2),此时,横轴的选择默认为先下后上,即第一个横轴在图形下侧,第二个横轴在图形上侧;当设置的纵坐标轴(横坐标轴)不少于3个时,坐标轴会摆放在二维图的左侧(下侧),我们也可以通过命令来改变坐标轴的位置。
另外,为了使绘制的图形更美观,我们还可以通过绘图的其它选项来设置指定坐标轴的标题、标签、刻度和取值范围,更改图形或文字的位置、颜色、形状、大小等。更多关于坐标轴的详尽用法,请读者使用Stata中的help文件来进一步学习(help axis_choice_options)。
接下来,我们通过构造一个简单的数据集来介绍这一选项的使用方法。在绘图之前,我们先构造一个数据集,生成绘图所用的变量。
clear
set obs 55
set seed 123456789
gen time = _n
format time %td//日数据
gen week = week(time)//周标识
gen AR = ln(1+runiform())//超额收益率(日)
sort time
gen CAR = sum(AR)//累计超额收益率(日)
bysort week: egen meanAR = mean(AR)//平均超额收益率(周)
gen meanp_AR = meanAR/meanAR[_n-1] - 1//平均超额收益率变动率(周)
首先,我们使用单个y轴生成AR和CAR的折线图。当只有1个y轴时,选项yaxis(1)可以省略,x轴同理。
twoway (line CAR time, lwidth(medthick)) (line AR time, lwidth(medthick))//使用一个y轴
我们发现,当AR和CAR 使用同一y轴时,由于AR的取值范围远小于CAR,因此AR的变化在图中并不明显。
接下来,我们使用选项yaxis(n)设置双y轴,生成AR和CAR的折线图。其中,yaxis(1)指AR变量使用第一个y轴,yaxis(2)指CAR变量使用第二个y轴,第一个坐标轴选项yaxis(1)可以省略[l1] ,Stata最多允许在同一方向设置9个坐标轴。
twoway (line AR time,yaxis(1) lcolor(ebblue)) (line CAR time,yaxis(2) lcolor(cranberry))//双y轴
此时,我们能明显看出AR和CAR的变化趋势。AR是日超额收益率,变化幅度较大;CAR是累计超额收益率,呈上升趋势。
我们可以使用yaxis(n)和xaxis(n)选项设置2个y轴和2个x轴,生成AR的散点图、CAR的折线图和meanAR的条形图。此时,由于变量取值范围不同,AR和meanAR可以使用第一个y轴(0-0.8),CAR使用第二个y轴(0-25);由于时间单位的不同,AR和CAR可以使用第一个x轴(日),meanAR使用第二个x轴(周)。为了输出结果美观,我们使用对图形的颜色、宽度、大小等进行了调整,这些调整可以通过命令选项写出,也可以直接在生成的图形中修改。
twoway (bar meanAR week, xaxis(1) yaxis(1) color(ltblue) barw(0.6) xlabel(1(1)8)) (scatter AR time, c(l) ytitle(AR) xaxis(2) yaxis(1) mcolor(teal) msize(small) lcolor(teal)) (line CAR time, xaxis(2) yaxis(2) color(teal) lwidth(medthick))//双x轴双y轴
生成AR和CAR的折线图,meanp_AR的条形图。此时,由于变量取值范围各不相同,AR, CAR和meanp_AR需要分别使用一个y轴;由于时间单位的不同,meanp_AR使用第一个x轴(周),CAR和AR使用第二个x轴(日)
twoway (bar meanp_AR week, xaxis(1) yaxis(1) barw(0.5) color(ltblue) xlabel(1(1)8, axis(1))) (line AR time, xaxis(2) yaxis(2) lcolor(teal)) (line CAR time,xaxis(2) yaxis(3) lcolor(teal)) //双x轴三y轴
此时,我们发现,在Stata绘图中,当设置的纵坐标轴(横坐标轴)不少于3个时,纵坐标轴(横坐标轴)会堆积在图形左侧(下侧)。如果小伙伴们想要自行选择坐标轴出现的位置,可以使用选项yscale(alt)或xscale(alt),将指定的坐标轴移到另一侧。
例如,我们希望把条形图的纵轴移到右侧显示,使图形更加美观,我们可以使用yscale(alt)选项实现这一操作,命令如下:
twoway (bar meanp_AR week,xaxis(1) yaxis(1) yscale(alt) barw(0.5) color(ltblue) xlabel(1(1)8, axis(1))) (line AR time, xaxis(2) yaxis(2) lcolor(teal)) (line CAR time,xaxis(2) yaxis(3) lcolor(teal))
此时,我们使用yscale(alt)选项将条形图的纵轴移到右侧显示,并使用yline(0)选项为条形图增加了一条y=0的水平参考线,增加了图形的可读性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27