京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用Stata进行概要统计及交互表统计
【命令范式】
summarize y1 y2 y3 对所列变量计算简单的概要统计量
summarize y1 y2 y3, detail 获取详细的描述性统计,包括百分位数,中位数,平均数,标准差,方差,偏度,峰度等。
summarize y1 if x1>3 & x2<.
summarize y1 [fweight=w], detail 利用w作为加权变量进行频数加权,计算y1详细的概要统计量
tabstat y1, stats(mean, sd, skewness, kurtosis) by(x1) 按变量x1的每个类别,分别计算变量y1的具体指定的概要统计量
tabulate x1, sort miss 显示x1所有值的频数分,包括缺失值。按顺序从大到小对行(变量值)进行排序。
tab1 x1 x2 x3 x4 对所列变量分别创建频数分布表
tabulate x1 x2 显示一个两变量交互表,其中x1为行变量,x2为列变量
tab2 x1 x2 x3 x4 创建所列变量的所有可能的二维交互表

tabulate x1, summ(y) 创建一个二维表,显示x1每个类别中变量y的均值、标准差及频数 tabulate x1 x3, sum(y) means 创建一个二维表,显示x1,x2每一种组合下y的均值
by x3, sort: tabulate x1 x2, exact 创建一个三维交互表,在x3的每个取值下创建x1(行)和x2(列)的分表,并为每个分表计算费舍精确检验,命令by x3, sort为x3排序
table x1 x2, contents(mean y1 median y2) 创建x1(行),x2(列)的二维交互表,单元格包含y1的平均数和y2的中位数
svy: tab y, percent ci 使用调查加权的数据,获得变量y的一维百分比表以及95%的置信区间。ci计算置信区间,默认为95%。后可添加level(a)设定置信区间a%
与ci相关的一个命令是cii,它可以直接根据概要统计量,来计算正态分布、二项分布或泊松分布的置信区间。它并不需要原始数据。
svy: tab y x, column percent 使用调查加权的数据,获得一个行变量y对列变量x的二维交互表,并对其狡辩性进行调整的卡方检验。单元格中给出了加权的列百分比。
【探测性数据分析】:
stem x1, lines(*) 对变量x1的所有观测值进行茎叶图处理lines限定了茎叶表达形式:首位数相同的开头共*行
lv x2 字符数值表利用序次统计量来分解一个分布。
【正态性检验和数据转换】:
sktest x1 正态性检验(偏度与峰度)
ladder x1 这个命令把幂阶梯和sktest的正态性检验结合在一起。它对阶梯上的每一种幂进行尝试并报告其结果是否显著地非正态。
gladder x1 该命令将每一种转换的直方图与正态曲线加以比较
qladder x1 四分位阶梯命令
(可键入help ladder查看详细)
【频数表和二维交互表】:
tabulate 有许多对创建二维表非常有用的选项,包括:
cell 显示每个单元格的总百分比
chi2对行变量和列变量独立的假设进行皮尔逊卡方检验
column 显示每个单元格的列百分比
exact 独立性假设的费舍精确检验
expected 显示独立性假定下二维表每个单元格内的期望频数
generate(new) 创造一组名为new1, new2 等的虚拟变量来代表被列表变量的取值
lrchi2 对独立性假设的似然比卡方检验。如果表格包含任何的空单元格,就得不到结果 missing 把缺失值也作为表的一行或一列
nofreq 不显示单元格频数
nolabel 显示数值而不是添加了标签的数值变量的取值标签
row 显示每个单元格的行百分比
tabi 偶尔我们可能需要在没有获得原始数据的情况下对已发表的表格重新进行分析,专门的命令tabi(直接制表)可以完成这项工作
【多表和多维交互表】:
tab1 x1 x2 x3 x4 对所列变量分别创建频数分布表
tab2 x1 x2 x3 x4 创建所列变量的所有可能的二维交互表
by x1, sort: tabulate x2 x3, nofreq col chi2 三维列联表,并对x1每一取值水平内x2,x3的独立性进行卡方检验
by x1 x2, sort: tabulate x3 x4, column chi2 四维交互表
table x1, contents(freq) 创建x1的简单的频数分布表
table x1 x2, contents(freq) by(x3)创建一个二维频数表或交互表,并通过x3分组 table 的contents()选项设定表格单元格要包含什么统计量
contents(freq) 频数
contents(mean x1) x1的平均数
contents(count x1) x1的非缺失值观测案例的计数
contents(p1 x1) x1的第1百分位数
【平均数、中位数以及其他概要统计量的列表】:
tabulate 能够很容易地创建分类变量每一类别的平均数和标准差的列表。比如,如果要列出x1每一类别内x2的平均值,键入:tabulate x1, sum(x2)
创建一个平均值的二维表: tabulate x1 x2, sum(x3) means
table不能进行统计检验,但它能很好地创建多达七维的包含平均数、标准差、总和等统计量的表格。
table x1, contents(mean x2) x1的一维表格,含有x1每一类别下x2的平均值
table x1 x2, contents(mean x3 median x3)
summarize, tabulate, table 以及其他相关命令都可以和标示重复观测数目的频数权数frequency weight 一起使用。
tabulate x1 x2 [fweight=count] (,column nof)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04