京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习故事汇-梯度下降
今天咱们的故事继续上一次线性回归来说,还不熟悉的小伙伴机票在这!机票直达-线性回归
当时咱们怎么唠的,是不是很多情况下要求解的目标没办法直接求呀!那该怎么办呢?咱们来用机器学习中最常用的套路-优化求解,也就是一步一步朝着最优解的方向前进!
首先给出目标函数(还记得线性回归中的目标函数吗?)也就是我们要达到的目标是使得目标函数最小(最小对应着梯度下降问题,也就是下山,那么最大也就是梯度上升,求极大值)可以把我们的优化目标看成一座山,山是由我们两个参数组成的,从上图可以看出在山中有一个山谷的最低点,这个最低点所对应的参数就是我们要求解的值!
那该怎么求解呢?下山要一步一步来,第一步要找到合适的下山方向,也就是参数所对应的梯度方向(偏导)因为我们要沿着最快的方向去下山,所以梯度的方向是最合适的(多个参数的时候需要各自求其偏导)。找到方向之后我们就该实际的去走啦,那一次走多大呢?经验表明一次走那么一小小小小步是比较合适的,因为如果步伐太大容易偏离全局最优解只得到局部最优解。方向与步长都搞定了,接下来按着我们设计好的路线更新参数就可以啦!
下山的方式也有很多种,我们来对比一下。
批量梯度下降:如上式需要综合考虑所有养那本,这就太慢了,但是效果还是蛮好的。
随机梯度下降:观察发现,每一次进行参数更新,只选择了一个样本,这样速度极快,但是代价就是一旦样本有瑕疵,会对结果产生很大的干扰!所以随机梯度下降会产生很大的浮动。
小批量梯度下降:这个就友好多了,综合了上面两位的优缺点,在迭代的时候选择一批(32,64,128比较常见)个样本来平均计算梯度的更新方向,这个就是现在应用最广的梯度下降方法啦!一个字,实用!
接下来我们再来研究一下步长(学习率)对结果产生的影响,从图中可以看到很多条线并且它们之间有着明显的差异,为啥模型不收敛!效果不好!没达标!罪魁祸首就是学习率了,它对我们结果会产生非常大的影响,一般情况下我们都是用较小的学习率,较多的迭代次数来满足它!
这张图是一个在真实数据集下使用逻辑回归进行迭代的目标函数变化情况,可以看到当我们使用梯度下降的时候目标函数最终达到了一个收敛状态,现在已经最好了吗?我们可以再增大些迭代次数再看看!
继续增大迭代次数,发现目标函数又发生了变化,所以要让模型更完美,需要更多轮次的训练!我们再来对比下不同的梯度下降策略!
这张图看起来有点乱呀,没有达到熟练状态,损失函数值还在乱蹦跶,这个就是随机梯度下降的结果,可以看出来这样的模型是不好的,只用一个样本来更新参数是不够的!所以现在我们很少使用随机梯度下降来解决实际问题。(那真的没办法用它了吗?也可以代价就是用极小的学习率配上极大的迭代次数,那为啥不用小批量的呢?)
最后的这张图就是收尾图啦,首先观察只用了4000次迭代就比之前的效果要好很多!这里做了如下两个工作。
(1):对数据进行了标准化,让数据各个特征均值为0方差为(数据预处理的常规套路)
(2):使用了小批量梯度下降进行迭代(保证了收敛性同时也加快了速度)
两个简单的操作就使得我们的模型效果快速达到了收敛状态,请记住这俩套路,你会一直沿用下去的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26