
常见的几种矩阵分解方式
1.三角分解(LU分解)
矩阵的LU分解是将一个矩阵分解为一个下三角矩阵与上三角矩阵的乘积。本质上,LU分解是高斯消元的一种表达方式。首先,对矩阵A通过初等行变换将其变为一个上三角矩阵。对于学习过线性代数的同学来说,这个过程应该很熟悉,线性代数考试中求行列式求逆一般都是通过这种方式来求解。然后,将原始矩阵A变为上三角矩阵的过程,对应的变换矩阵为一个下三角矩阵。这中间的过程,就是Doolittle algorithm(杜尔里特算法)。
转一个Tony Ma同学写的例子:
若AX=b是一个非奇异系统,那么高斯消元法将A化简为一个上三角矩阵。若主轴上没有0值,则无需交互行,因此只需进行第3类初等行变换(把第 i 行加上第 j 的 k 倍)即可完成此变换。例如
第3类行变换可以通过左乘相应的初等矩阵image实现,对上例来说进行的3个变换就是相应初等矩阵的乘积。注意最右边是一个下三角矩阵L
从而有G3G2G1A=U
,即A=G−11G−12G−13U。因此A=LU
,为一个下三角与一个上三角矩阵的乘积,因此称为LU分解。
注意:
1)U是高斯消元的结果,且对角线上是主元
2)L对角线上是1,对角线下面的元素image恰恰是在式1中用于消去(i,j)位置上元素的乘子。
LU分解常用来求解线性方程组,求逆矩阵或者计算行列式。例如在计算行列式的时候,A=LU
,det(A)=det(L)det(U)
。而对于三角矩阵来说,行列式的值即为对角线上元素的乘积。所以如果对矩阵进行三角分解以后再求行列式,就会变得非常容易。
在线性代数中已经证明,如果方阵A
是非奇异的,即A
的行列式不为0,LU分解总是存在的。
2.QR分解
QR分解是将矩阵分解为一个正交矩阵与上三角矩阵的乘积。用一张图可以形象地表示QR分解:
这其中,Q
为正交矩阵,QTQ=I
,R为上三角矩阵。
实际中,QR分解经常被用来解线性最小二乘问题。
3.Jordan分解
每次看到Jordan分解,就想起当年考研的那段时光。控制原理里面,就有大段关于Jordan分解的内容。可惜当时矩阵分析没有学到位,线性代数里头又没有提到Jordan分解,所以理解起来那个费劲。
废话这么多,先来看看Jordan到底是个什么鬼:
我们将下面的k×k
阶方阵
称为Jordan块。同时,我们也将由若干个Jordan块组成的对角矩阵成为Jordan阵。
由Jordan块的定义不难看出,Jordan 阵与对角阵的差别仅在于它的上 (下)对角线的元素是0或1。因此,它是特殊的上三角阵。
为什么要进行Jordan分解呢?或者说,Jordan分解能解决什么问题呢?
我们先来复习一下,如果一个n阶方阵A
可以对角化,那么A至少满足下列条件的一个:
1.A有n个线性无关的特征向量。
2.A的所有特征值的几何重数等于相应的代数重数,即qi=pi。
3.A
的极小多项式经标准分解后,每一项都是一次项,且重数都是1。
因为有的矩阵不可以进行对角化,那么我们可以对它进行Jordan分解,达到简化计算的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28