
神经网络究竟干了一件什么事
今天我们来讨论当下最热门的神经网络,现在深度学习炒的非常火,其实本质还是把神经网络算法进行了延伸和优化!咱们这回的目标就直入主题用最简单的语言让大家清楚神经网络究竟是个什么东西。关于神经网络与人工智能的发展,以及神经网络各种生物学模型咱们就不唠了,我是觉得把神经网络比作各种类人脑模型和生物学模型没有半点助于咱们理解,反而把简单的问题复杂了,这些恩怨情仇咱们就不过多介绍了!
这张图就是我们的核心了,也是整个神经网络的架构,只要能理解这个,那就OK了!首先我们来观察整个结构,发现在神经网络中是存在多个层的,有输入层,隐层1,隐层2,输出层。那么我们想要得到一个合适的结果,就必须通过这么多层得到最终的结果,在这里咱们先来考虑一个问题,神经网络究竟做了一件什么事?
如果你想做一个猫狗识别,大家首先想到了神经网络,那它是怎么做的呢?先来想想咱们人类是怎么分辨的,是不是根据猫和狗的特征是不一样的,所以我们可以很轻松就知道什么事猫什么是狗。既然这样,神经网络要做的事跟咱们一样,它也需要知道猫的特征是什么,狗的特征是什么,这么多的层次结构其实就做了一件事,进行特征提取,我们希望网络结构能更好的识别出来我们想要的结果,那势必需要它们能提取处最合适的特征,所以神经网络的强大之处就在于它可以帮助我们更好的选择出最恰当的特征。
在第一张图中我们定义了多层的结构,在这里有一个概念叫做神经元,那么神经元真的存在吗?像大脑一样?其实就是一个权重参数矩阵,比如你有一个输入数据。它是由3个特征组成的,我们就说输入是一个batchsize*3的矩阵,(batchsieze是一次输入的数据量大小),那既然要对输入提取特征,我们就需要权重参数矩阵W了,在图中神经元的意思就是我们要把这个3个特征如何变幻才能得到更好的信息表达,比如中间的第一个隐层有4个神经元,那么我们需要的第一个权重参数矩阵W1就是3
* 4,表示通过矩阵链接后得到的是batchsize *
4的特征,也就是说我们将特征进行的变换,看起来好像是从3变到了4只增加了一个,但是我们的核心一方面是特征的个数,这个我们可以自己定义神经元的个数。另一方面我们关注的点在于,什么样的权重参数矩阵W1才能给我得到更好的特征,那么神经网络大家都说它是一个黑盒子,原因就在于权重参数矩阵W1内部是很难解释的,其实我们也不需要认识它,只要计算机能懂就OK了。那么这一步是怎么做的呢?计算机怎么得到最好的权重参数W1帮我们完成了特征的提取呢?这一点就要靠反向传播与梯度下降了,简单来说就是我们告诉神经网络我的目标就是分辨出什么是猫什么是狗,然后神经网络就会通过大量的迭代去寻找最合适的一组权重参数矩阵。(如果不清楚什么事梯度下降,先来看看我之前的文章吧!)
在神经网络中,我们刚才解释了什么是神经元,说白了就是一组权重参数。那整个网络不止这么一层呀,还有很多层次结构,这就是说我们的网络要想充分利用其价值就需要通过多种变换才能得到最终最合适的特征,一旦我们得到了最合适的特征,后续我们利用特征来进行分类或者回归任务就都随你啦。这就是神经网络的本质,其实我本质上认为神经网络就是一种特征提取器,通过这种设计可以让我们得到更有价值的信息!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29