
AI时代-人工智能入学指南
本篇文章旨在帮助大家建立一份人工智能的学习计划以及我的一些个人建议,希望大家在AI之路都能早日成为大神!本篇主要内容如下:
人工智能现在被吹的这么火(实际上也蛮厉害的),越来越多的小伙要加入到这个大家庭中来啦,那么最大的问题也就随之而来了,如何学习人工智能呢?万事开头难,如何走第一步十分关键,学习的成本现在来说还是蛮高的,我们不可能一味广泛的学习而不去赚钱嘛!下面咱们就来说说当下最合适的学习规划!
好多问题呀,大家的问题可能更多,咱们重点关注于
(1):语言的选择
(2):该从哪里开始?学什么?怎么学?
(3):算法就要涉及到数学啦,怎么办呀!
(4):学了之后怎么用?案例怎么做?
语言的选择肯定是Python无疑了,为什么?人生苦短。。。这句我就不说了,最主要的原因在于大家都在用,公司里你的同事和老大都用Python玩数据建模型,你难道还敢不用吗!(说白了,我一天能干完的活我要花两天吗?当然不需要的!)
我是个小白呀,并不是程序员,怎么办呀,这些安装配置啥的好麻烦啊!没关系!我们有大礼包(全家桶),一站式帮你解决安装问题,下一步,下一步,选路径,OK啦!推荐大家使用Anaconda去安装(直接百度它就得了)。
学习是一件苦事,但是也得按照合适的方法,这些都是我的个人建议,大家可以参考,我觉得语言知识一门工具,边用边学是最好的方式,千万不要花几个月先学个Python再去用,这样等你用的时候也忘的差不多了!
人工智能听着这么牛的一个词,那到底该怎么学呀?这个圈子太大了,但是基础是不会变的就是我们的机器学习,它是咱们后续学习的保障也是最核心的内容了!人工智能的大家庭中有很多比较高大上的词,这些虽然很牛,但是核心都离不开机器学习的!
机器学习能做的就太多了,数据处理分析,图像识别,文本挖掘,自然语言处理,语音识别等等。各大公司也是越来越注重这方面啦,都在比技术!应用面还在慢慢拓展,越来越多的公司开始重视机器学习的作用啦!
机器学习处理任务的流程说起来还是比较简单的(做起来你就知道了!),让机器做事情你得有数据(非常重要)才行,选择一个合适的机器学习算法,让它去学吧,学完之后我们评估搞定了就开始用吧!
机器学习我该怎么学呀?我觉得算法与应用都是很重要的,很多人都忽略了算法的推导,这对你之后的应用肯定是不利的,因为我们要做事情不能盲目去做,需要知道为什么要这么做!我最常说的一句话就是哪里不会点哪里(其实是广告看多了),查找资料的能力也很重要,遇到问题了还是要及时解决!
关于数学,大家意见可能会不一样,我觉得如果有时间,还是都学学吧,技多不压身,帮助是大大的!
深度学习现在太火了,那它是什么呢?说白了就是机器学习的一个分支,建议大家还是先从基本的机器学习算法开始,逐步过度到深度学习(很难一口吃成个胖子)。
学习的路径和很多种,只要你愿意花时间任何渠道都是可以的,但是一些好习惯也是需要的,自己懂才是真的懂,光看别人的效果未必会好!
案例资源怎么找呢?Github上满满都是,Kaggle竞赛提供了完美的环境,这些都是我们最常逛的地方啦!如果还能有几个伙伴一起学,那岂不是美滋滋!入学指南就给大家推荐到这里啦,作为参考快制定你的学习规划吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15