京公网安备 11010802034615号
经营许可证编号:京B2-20210330
AI时代-人工智能入学指南
本篇文章旨在帮助大家建立一份人工智能的学习计划以及我的一些个人建议,希望大家在AI之路都能早日成为大神!本篇主要内容如下:
人工智能现在被吹的这么火(实际上也蛮厉害的),越来越多的小伙要加入到这个大家庭中来啦,那么最大的问题也就随之而来了,如何学习人工智能呢?万事开头难,如何走第一步十分关键,学习的成本现在来说还是蛮高的,我们不可能一味广泛的学习而不去赚钱嘛!下面咱们就来说说当下最合适的学习规划!
好多问题呀,大家的问题可能更多,咱们重点关注于
(1):语言的选择
(2):该从哪里开始?学什么?怎么学?
(3):算法就要涉及到数学啦,怎么办呀!
(4):学了之后怎么用?案例怎么做?
语言的选择肯定是Python无疑了,为什么?人生苦短。。。这句我就不说了,最主要的原因在于大家都在用,公司里你的同事和老大都用Python玩数据建模型,你难道还敢不用吗!(说白了,我一天能干完的活我要花两天吗?当然不需要的!)
我是个小白呀,并不是程序员,怎么办呀,这些安装配置啥的好麻烦啊!没关系!我们有大礼包(全家桶),一站式帮你解决安装问题,下一步,下一步,选路径,OK啦!推荐大家使用Anaconda去安装(直接百度它就得了)。
学习是一件苦事,但是也得按照合适的方法,这些都是我的个人建议,大家可以参考,我觉得语言知识一门工具,边用边学是最好的方式,千万不要花几个月先学个Python再去用,这样等你用的时候也忘的差不多了!
人工智能听着这么牛的一个词,那到底该怎么学呀?这个圈子太大了,但是基础是不会变的就是我们的机器学习,它是咱们后续学习的保障也是最核心的内容了!人工智能的大家庭中有很多比较高大上的词,这些虽然很牛,但是核心都离不开机器学习的!
机器学习能做的就太多了,数据处理分析,图像识别,文本挖掘,自然语言处理,语音识别等等。各大公司也是越来越注重这方面啦,都在比技术!应用面还在慢慢拓展,越来越多的公司开始重视机器学习的作用啦!
机器学习处理任务的流程说起来还是比较简单的(做起来你就知道了!),让机器做事情你得有数据(非常重要)才行,选择一个合适的机器学习算法,让它去学吧,学完之后我们评估搞定了就开始用吧!
机器学习我该怎么学呀?我觉得算法与应用都是很重要的,很多人都忽略了算法的推导,这对你之后的应用肯定是不利的,因为我们要做事情不能盲目去做,需要知道为什么要这么做!我最常说的一句话就是哪里不会点哪里(其实是广告看多了),查找资料的能力也很重要,遇到问题了还是要及时解决!
关于数学,大家意见可能会不一样,我觉得如果有时间,还是都学学吧,技多不压身,帮助是大大的!
深度学习现在太火了,那它是什么呢?说白了就是机器学习的一个分支,建议大家还是先从基本的机器学习算法开始,逐步过度到深度学习(很难一口吃成个胖子)。
学习的路径和很多种,只要你愿意花时间任何渠道都是可以的,但是一些好习惯也是需要的,自己懂才是真的懂,光看别人的效果未必会好!
案例资源怎么找呢?Github上满满都是,Kaggle竞赛提供了完美的环境,这些都是我们最常逛的地方啦!如果还能有几个伙伴一起学,那岂不是美滋滋!入学指南就给大家推荐到这里啦,作为参考快制定你的学习规划吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27