京公网安备 11010802034615号
经营许可证编号:京B2-20210330
AI时代-人工智能入学指南
本篇文章旨在帮助大家建立一份人工智能的学习计划以及我的一些个人建议,希望大家在AI之路都能早日成为大神!本篇主要内容如下:
人工智能现在被吹的这么火(实际上也蛮厉害的),越来越多的小伙要加入到这个大家庭中来啦,那么最大的问题也就随之而来了,如何学习人工智能呢?万事开头难,如何走第一步十分关键,学习的成本现在来说还是蛮高的,我们不可能一味广泛的学习而不去赚钱嘛!下面咱们就来说说当下最合适的学习规划!
好多问题呀,大家的问题可能更多,咱们重点关注于
(1):语言的选择
(2):该从哪里开始?学什么?怎么学?
(3):算法就要涉及到数学啦,怎么办呀!
(4):学了之后怎么用?案例怎么做?
语言的选择肯定是Python无疑了,为什么?人生苦短。。。这句我就不说了,最主要的原因在于大家都在用,公司里你的同事和老大都用Python玩数据建模型,你难道还敢不用吗!(说白了,我一天能干完的活我要花两天吗?当然不需要的!)
我是个小白呀,并不是程序员,怎么办呀,这些安装配置啥的好麻烦啊!没关系!我们有大礼包(全家桶),一站式帮你解决安装问题,下一步,下一步,选路径,OK啦!推荐大家使用Anaconda去安装(直接百度它就得了)。
学习是一件苦事,但是也得按照合适的方法,这些都是我的个人建议,大家可以参考,我觉得语言知识一门工具,边用边学是最好的方式,千万不要花几个月先学个Python再去用,这样等你用的时候也忘的差不多了!
人工智能听着这么牛的一个词,那到底该怎么学呀?这个圈子太大了,但是基础是不会变的就是我们的机器学习,它是咱们后续学习的保障也是最核心的内容了!人工智能的大家庭中有很多比较高大上的词,这些虽然很牛,但是核心都离不开机器学习的!
机器学习能做的就太多了,数据处理分析,图像识别,文本挖掘,自然语言处理,语音识别等等。各大公司也是越来越注重这方面啦,都在比技术!应用面还在慢慢拓展,越来越多的公司开始重视机器学习的作用啦!
机器学习处理任务的流程说起来还是比较简单的(做起来你就知道了!),让机器做事情你得有数据(非常重要)才行,选择一个合适的机器学习算法,让它去学吧,学完之后我们评估搞定了就开始用吧!
机器学习我该怎么学呀?我觉得算法与应用都是很重要的,很多人都忽略了算法的推导,这对你之后的应用肯定是不利的,因为我们要做事情不能盲目去做,需要知道为什么要这么做!我最常说的一句话就是哪里不会点哪里(其实是广告看多了),查找资料的能力也很重要,遇到问题了还是要及时解决!
关于数学,大家意见可能会不一样,我觉得如果有时间,还是都学学吧,技多不压身,帮助是大大的!
深度学习现在太火了,那它是什么呢?说白了就是机器学习的一个分支,建议大家还是先从基本的机器学习算法开始,逐步过度到深度学习(很难一口吃成个胖子)。
学习的路径和很多种,只要你愿意花时间任何渠道都是可以的,但是一些好习惯也是需要的,自己懂才是真的懂,光看别人的效果未必会好!
案例资源怎么找呢?Github上满满都是,Kaggle竞赛提供了完美的环境,这些都是我们最常逛的地方啦!如果还能有几个伙伴一起学,那岂不是美滋滋!入学指南就给大家推荐到这里啦,作为参考快制定你的学习规划吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27