
Intel发布AI免费系列课程3部曲:机器学习基础、深度学习基础以及TensorFlow基础
Intel于近期发布了三门AI系列的免费课程,分别是关于机器学习基础、深度学习基础、TensorFlow基础三个方面。据悉,该系列免费课程主要针对研究生阶段的学生,营长将三门课程概要及链接整理如下。
课程1:机器学习基础
概要
本课程介绍了Intel架构中的机器学习基础知识。涵盖的主题包括:
回顾了机器学习可以解决的问题类型
理解机器学习算法中的各组成模块
学习在机器学习中构建模型的基础知识
探索关键算法
在本课程结束时,学生将了解以下内容:
监督学习算法
如何识别待解决问题的类型,选择正确的算法,调整参数并验证模型
本次免费课有12周的课程,每周至少需要3个小时才能完成。并且这些课程的练习需要用Python来实现。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/machine-learning-501
课程2:深度学习基础
概要
本课程介绍了Intel架构中的深度学习基础知识。深度学习在计算机视觉和自然语言处理方面所实现的优异表现,使其在业界引起了极大关注。
在本课程结束时,学生将对以下内容有一个明确的理解:
深度学习的技术,专业术语和有关数学知识
如何适当地构建和训练这些模型
各种深度学习应用
如何使用预先训练好的模型获得最佳结果
本次免费课有12周的课程,每周至少需要3个小时才能完成。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/deep-learning-501
课程3:TensorFlow基础
概要
TensorFlow是一个流行的机器学习框架和数据流编程的开源库。在本课程中,您将了解:
用TensorFlow构建模型的基础
重要的技术:如标准化、正则化和小批量处理(mini-batching)
“核化”以及如何将它们应用于卷积神经网络(CNN)
CNN的基本模板以及不同的可调参数
TFRecord, queues, coordinators
在本课程结束时,学生将对以下内容有一个明确的理解:
基础网络结构,卷积核,池化和多分类任务
如何将基础网络扩展到更复杂的网络
通过在现有网络上使用迁移学习来利用它们的优势
本次免费课有8周的课程,每周至少需要3个小时才能完成。
课程网址:
https://software.intel.com/en-us/ai-academy/students/kits/tensor-flow-501
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29