京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R完成正太分布检验
什么是正太分布检验?
判断一样本所代表的背景总体与理论正态分布是否没有显著差异的检验。
方法一概率密度曲线比较法
看样本与正太分布概率密度曲线的拟合程度,R代码如下:
norm_expression <- function(x) (1/sqrt(2*pi))*exp(-0.5*x^2)
#curve(norm_expression, -4, 4, col="red") #标准正太分布概率密度曲线
#画样本概率密度图
s <- rnorm(100) #产生样本
d <- density(s)
plot(d, col="green", ylim=c(0, 0.5))
#添加正太分布概率密度图
s2 <- seq(from=-4, to=4, length.out=100)
lines(s2, norm_expression(s2), col="red")
画图结果如下:
方法二正太Q-Q图法
使用Q-Q图来判断数据是否服从正太分布,R代码如下:
s <- rnorm(100) #产生样本
qqnorm(s)
qqline(s)
画图结果如下,可见数据分布集中在对角线上,可以认为总体服从正太分布:
方法三经验法则
约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”。
使用R的验证代码如下:
s <- rnorm(10000) #产生样本
sum(abs(s - mean(s)) < sd(s)) / length(s)
sum(abs(s - mean(s)) < 2*sd(s)) / length(s)
程序结果:
> s <- rnorm(10000) #产生样本
> sum(abs(s - mean(s)) < sd(s)) / length(s)
[1] 0.6871
> sum(abs(s - mean(s)) < 2*sd(s)) / length(s)
[1] 0.9538
方法四 统计检验方法
使用样本偏度和样本峰度来估计总体偏度和峰度,在正太分布的假定下,样本偏度和峰度均服从均值为零、方差分别为6/T和24/T的正太分布,可以分别检验偏度和峰度,也可以将两个统计量结合起来生成一个服从自由度为2的卡方分布的统计量,再进行检验【参见《金融时间序列分析》第三版P8~P9】。理论方面的东西略...
可以使用夏皮罗-威尔克(Shapiro-Wilk)检验,代码如下:
[plain] view plain copy
s <- rnorm(1000) #产生样本
shapiro.test(s)
检验结果:
> shapiro.test(s)
Shapiro-Wilk normality test
data: s
W = 0.9987, p-value = 0.6716
shapiro.test函数输出一个p值,照惯例,p<0.05说明总体不太可能是正太分布,否则不能提供这么个证据,也就是说这个检验比较保守,倾向于错误的过分证明正态性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03