京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。用不同方法清洗的数据,对后续挖掘的分析工作会带来重大影响。
1、数值化
由于原始数据往往存在各种不同格式的数据形式,比如如果你要处理的数据是数值型,但是原始数据也许有字符型或者其他,那就要对其进行标准化操作。处理的方式可以很简单也可以很复杂,我采取过的一个方法是:对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,可以取一个适当的质数对其求模,本质上就是映射到一个区间了。然后就得到数值型的数据了。
2、标准化 normalization
由于原始数据各个维度之间的数值往往相差很大,比如一个维度的最小值是0.01,另一个维度最小值却是1000,那么也许在数据分析的时候,计算相关性或者方差啥的指标,后者会掩盖了前者的作用。因此有必要对整体数据进行归一化工作,也就是将它们都映射到一个指定的数值区间,这样就不会对后续的数据分析产生重大影响。我采取过的一个做法是:min-max标准化。
3、降维
由于原始数据往往含有很多维度,也就是咱们所说的列数。比如对于银行数据,它往往就含有几十个指标。这些维度之间往往不是独立的,也就是说也许其中之间若干的维度之间存在关联,也许有他就可以没有我,因此咱们可以使用数据的相关性分析来降低数据维度。我使用过的一个方法是:主成分分析法。
4、完整性:
解决思路:数据缺失,那么补上就好了。
补数据有什么方法?
- 通过其他信息补全,例如使用身份证件号码推算性别、籍贯、出生日期、年龄等
- 通过前后数据补全,例如时间序列缺数据了,可以使用前后的均值,缺的多了,可以使用平滑等处理,记得Matlab还是什么工具可以自动补全
- 实在补不全的,虽然很可惜,但也必须要剔除。但是不要删掉,没准以后可以用得上
- 解决数据的唯一性问题
解题思路:去除重复记录,只保留一条。
去重的方法有:
- 按主键去重,用sql或者excel“去除重复记录”即可,
- 按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。例如不同渠道来的客户数据,可以通过相同的关键信息进行匹配,合并去重。
- 解决数据的共识性问题
解题思路:用最权威的那个渠道的数据
方法:
对不同渠道设定权威级别,例如:在家里,首先得相信媳妇说的。。。
- 解决数据的合法性问题
解题思路:设定判定规则
- 设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除
- 字段类型合法规则:日期字段格式为“2010-10-10”
- 字段内容合法规则:性别 in (男、女、未知);出生日期<=今天
设定警告规则,凡是不在此规则范围内的,进行警告,然后人工处理
- 警告规则:年龄》110
离群值人工特殊处理,使用分箱、聚类、回归、等方式发现离群值
解决数据的一致性问题
解题思路:建立数据体系,包含但不限于:
- 指标体系(度量)
- 维度(分组、统计口径)
- 单位
- 频度
- 数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15