京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。用不同方法清洗的数据,对后续挖掘的分析工作会带来重大影响。
1、数值化
由于原始数据往往存在各种不同格式的数据形式,比如如果你要处理的数据是数值型,但是原始数据也许有字符型或者其他,那就要对其进行标准化操作。处理的方式可以很简单也可以很复杂,我采取过的一个方法是:对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,可以取一个适当的质数对其求模,本质上就是映射到一个区间了。然后就得到数值型的数据了。
2、标准化 normalization
由于原始数据各个维度之间的数值往往相差很大,比如一个维度的最小值是0.01,另一个维度最小值却是1000,那么也许在数据分析的时候,计算相关性或者方差啥的指标,后者会掩盖了前者的作用。因此有必要对整体数据进行归一化工作,也就是将它们都映射到一个指定的数值区间,这样就不会对后续的数据分析产生重大影响。我采取过的一个做法是:min-max标准化。
3、降维
由于原始数据往往含有很多维度,也就是咱们所说的列数。比如对于银行数据,它往往就含有几十个指标。这些维度之间往往不是独立的,也就是说也许其中之间若干的维度之间存在关联,也许有他就可以没有我,因此咱们可以使用数据的相关性分析来降低数据维度。我使用过的一个方法是:主成分分析法。
4、完整性:
解决思路:数据缺失,那么补上就好了。
补数据有什么方法?
- 通过其他信息补全,例如使用身份证件号码推算性别、籍贯、出生日期、年龄等
- 通过前后数据补全,例如时间序列缺数据了,可以使用前后的均值,缺的多了,可以使用平滑等处理,记得Matlab还是什么工具可以自动补全
- 实在补不全的,虽然很可惜,但也必须要剔除。但是不要删掉,没准以后可以用得上
- 解决数据的唯一性问题
解题思路:去除重复记录,只保留一条。
去重的方法有:
- 按主键去重,用sql或者excel“去除重复记录”即可,
- 按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。例如不同渠道来的客户数据,可以通过相同的关键信息进行匹配,合并去重。
- 解决数据的共识性问题
解题思路:用最权威的那个渠道的数据
方法:
对不同渠道设定权威级别,例如:在家里,首先得相信媳妇说的。。。
- 解决数据的合法性问题
解题思路:设定判定规则
- 设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除
- 字段类型合法规则:日期字段格式为“2010-10-10”
- 字段内容合法规则:性别 in (男、女、未知);出生日期<=今天
设定警告规则,凡是不在此规则范围内的,进行警告,然后人工处理
- 警告规则:年龄》110
离群值人工特殊处理,使用分箱、聚类、回归、等方式发现离群值
解决数据的一致性问题
解题思路:建立数据体系,包含但不限于:
- 指标体系(度量)
- 维度(分组、统计口径)
- 单位
- 频度
- 数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27