
多元线性回归分析理论详解及SPSS结果分析
当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。这里直说多元线性回归。对比一元线性回归:
1.1多元回归模型:
1.2多元回归方程
1.3估计的多元回归方程
3.1 多重判定系数:(Multiple coefficient of determination)
4. 显著性检验
在此重点说明,在一元线性回归中,线性关系的检验(F检验)和回归系数的检验(t检验)是等价的。
但是在多元回归中,线性关系的检验主要是检验因变量同多个自变量线性关系是否显著,在k个自变量中,只要有一个自变量与因变量的线性关系显著,F检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中。
4.1 线性关系的检验
步骤:
(1):提出假设
(3):作出统计决策。
5.1 多重共线性
多重共线性:当回归模型中两个或两个以上的变量彼此相关时,则称回归模型中存在多重共线性。
多重共线性的判别:
(1)模型中中各对自变量之间显著相关
(2)当模型的线性关系检验(F检验)显著时,几乎所有的回归系数βi的t检验却不显著。
(3)回归系数的正负号与预期的相反。
(4)容忍度(tolerance) 与 方差扩大因子(variance inflation factor, VIF).
容忍度:某个变量的容忍度等于 1 减去该自变量为因变量而其他k−1个自变量为预测变量时所得到的线性回归模型的判定系数。即1−R2i。 容忍度越小,多重共线性越严重。通常认为 容忍度小于 0.1 时,存在严重的多重共线性。
方差扩大因子:容忍度的倒数。 因此,VIF越大,多重共线性越严重,一般认为VIF的值大于10时,存在严重的多重共线性。
5.2 多重共线性的处理
常见的两种办法:
(1)将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
(2)如果要在模型中保留所有的自变量,那么应该:
(2.1)避免根据t统计量对单个参数β进行检验,
(2.2)对因变量y值的推断(预测和估计)限定在自变量样本值的范围内。
5.3选择变量避免共线性的几种方式,
在建立回归模型时,我们总是希望用最少的变量来说明问题,选择自变量的原则通常是对统计量进行显著性检验,检验的根据是:将一个或一个以上的自变量引入回归模型中时,是否使残差平方和(SSE)显著减少,如果增加一个自变量使残差平方和(SSE)显著减少,则说明有必要将这个变量引入回归模型中,否则,没有必要将这个变量引入回归模型中。确定在模型中引入自变量xi是否使残差平方和(SSE)显著减少的方法,就是使用F统计量的值作为一个标准,以此来确定在模型中增加一个自变量,还是从模型中剔除一个自变量。
变量选择方式:
5.3.1 向前选择;
第一步: 对k个自变量分别与因变量y的一元线性回归模型,共有k个,然后找到F统计量的值最大的模型及其自变量xi并将其首先引入模型。
第二步: 在已经引入模型的xi的基础上,再分别拟合xi与模型外的k−1个自变量的线性回归模型,挑选出F值最大的含有两个自变量的模型, 依次循环、直到增加自变量不能导致SSE显著增加为止,
5.3.2向后剔除
第一步:先对所有的自变量进行线性回归模型。然后考察p<k个去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,
第二步:考察p−1个再去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,直到剔除一个自变量不会使SSE值显著减小为止,这时,模型中的所剩自变量自然都是显著的。
5.3.3逐步回归
是上面两个的结合、考虑的比较全,以后就用这个就可以。
具体的分析过程、咱们以spss的多元回归分析结果为例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15