京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国内大数据需求所面临的典型存储挑战
大数据让零售无需店面,在最大限度降低投资同时,加快现金流周转效率。大数据使各行各业商家提高获取优质客户资源和提升利润空间的同时,也使竞争进入“一兵一卒”用户争夺战之中。

大数据时代,企业数据量和数据种类出现飞速增长。大数据时代,全球应用数量从几年前的以十万为单位计算,到了以百万为单位计算。10年前,IT从业人员只是以百万计算,数据生成来源也比较单一,但现在,IT服务使用者已经上升到十几亿的消费者,数据生成来源更为丰富,是名副其实的大数据时代
。同时,IT资源的配置和管理要满足高度虚拟化或集群IT架构的需求。企业应用部署效率、业务稳定服务性能,以及动态有效满足OLTP和OLAP性能要求,直接决定着企业核心竞争力。企业要求存储更灵活、更动态、性能更稳定,以支撑大量用户对各种IT服务交付的能力。此外,大数据时代还需要集中、统一和自动化管理的功能。
中国市场针对大数据的需求所面临的典型的存储挑战:
1.业务关键型性能:就“存储是否能满足目前业务关键应用性能”的调查结果显示,接受调查人员(总计455名受访者)中28.1%表示在未来12个月考虑部署新型存储。36.5%用户在未来12-24个月考虑部署新存储。大数据时代,应用使用者的快速增加,对存储并行处理能力提出了更高要求。此外,生产应用虚拟化产生大量随机读取,这就对传统IOPs和时间延迟提出了挑战。
2.存储利用率:大数据时代数据量快速增加。如何通过存储容量优化,降低存储容量和网络资源需求,降低数据保护过程对生产环境的性能影响,是控制大数据存储新增开支的关键。
3.
容量优化系统性能:为了提高存储资源利用率和业务连续性,存储厂商近年纷纷推出各种企业级功能。为了降低存储管理强度,中端以上存储具有多种工作负载性能监控、动态资源配置和自动化端对端管理功能。然而,传统存储控制器处理能力有限,启动这些企业级功能需要消耗存储控制器资源。用户往往要在存储资源优化和生产性能之间做取舍。
4.在大数据时代如何利用各种已有存储资源,为大数据时代的业务发展提供高可扩展和业务连续性是关键。传统存储下,不同厂商的存储之间无法实现快照、复制、备份和恢复,由此带来数据保护的大量开支。同时,带来存储资源浪费。
大数据环境对系统性能要求非常苛刻,要满足应用OLTP和大数据分析OLAP,以及业务关键型应用的低延迟需求,传统地通过增加控制器和硬盘这一解决方式不仅带来高昂的采购、运维成本和占地空间成本,而且还会导致资源的闲置,从而进一步降低了企业的IT总拥有成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15