
简单易学的机器学习算法——K-Means++算法
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
一、K-Means算法存在的问题
由于K-Means算法的简单且易于实现,因此K-Means算法得到了很多的应用,但是从K-Means算法的过程中发现,K-Means算法中的聚类中心的个数k需要事先指定,这一点对于一些未知数据存在很大的局限性。其次,在利用K-Means算法进行聚类之前,需要初始化k个聚类中心,在上述的K-Means算法的过程中,使用的是在数据集中随机选择最大值和最小值之间的数作为其初始的聚类中心,但是聚类中心选择不好,对于K-Means算法有很大的影响。对于如下的数据集:
如选取的个聚类中心为:
最终的聚类结果为:
为了解决因为初始化的问题带来K-Means算法的问题,改进的K-Means算法,即K-Means++算法被提出,K-Means++算法主要是为了能够在聚类中心的选择过程中选择较优的聚类中心。
二、K-Means++算法的思路
K-Means++算法在聚类中心的初始化过程中的基本原则是使得初始的聚类中心之间的相互距离尽可能远,这样可以避免出现上述的问题。K-Means++算法的初始化过程如下所示:
在数据集中随机选择一个样本点作为第一个初始化的聚类中心
选择出其余的聚类中心:
计算样本中的每一个样本点与已经初始化的聚类中心之间的距离,并选择其中最短的距离,记为d_i
以概率选择距离最大的样本作为新的聚类中心,重复上述过程,直到k个聚类中心都被确定
对k个初始化的聚类中心,利用K-Means算法计算最终的聚类中心。
在上述的K-Means++算法中可知K-Means++算法与K-Means算法最本质的区别是在k个聚类中心的初始化过程。
Python实现:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
from random import random
from KMeans import load_data, kmeans, distance, save_result
FLOAT_MAX = 1e100 # 设置一个较大的值作为初始化的最小的距离
def nearest(point, cluster_centers):
min_dist = FLOAT_MAX
m = np.shape(cluster_centers)[0] # 当前已经初始化的聚类中心的个数
for i in xrange(m):
# 计算point与每个聚类中心之间的距离
d = distance(point, cluster_centers[i, ])
# 选择最短距离
if min_dist > d:
min_dist = d
return min_dist
def get_centroids(points, k):
m, n = np.shape(points)
cluster_centers = np.mat(np.zeros((k , n)))
# 1、随机选择一个样本点为第一个聚类中心
index = np.random.randint(0, m)
cluster_centers[0, ] = np.copy(points[index, ])
# 2、初始化一个距离的序列
d = [0.0 for _ in xrange(m)]
for i in xrange(1, k):
sum_all = 0
for j in xrange(m):
# 3、对每一个样本找到最近的聚类中心点
d[j] = nearest(points[j, ], cluster_centers[0:i, ])
# 4、将所有的最短距离相加
sum_all += d[j]
# 5、取得sum_all之间的随机值
sum_all *= random()
# 6、获得距离最远的样本点作为聚类中心点
for j, di in enumerate(d):
sum_all -= di
if sum_all > 0:
continue
cluster_centers[i] = np.copy(points[j, ])
break
return cluster_centers
if __name__ == "__main__":
k = 4#聚类中心的个数
file_path = "data.txt"
# 1、导入数据
print "---------- 1.load data ------------"
data = load_data(file_path)
# 2、KMeans++的聚类中心初始化方法
print "---------- 2.K-Means++ generate centers ------------"
centroids = get_centroids(data, k)
# 3、聚类计算
print "---------- 3.kmeans ------------"
subCenter = kmeans(data, k, centroids)
# 4、保存所属的类别文件
print "---------- 4.save subCenter ------------"
save_result("sub_pp", subCenter)
# 5、保存聚类中心
print "---------- 5.save centroids ------------"
save_result("center_pp", centroids)
其中,KMeans所在的文件为:
# coding:UTF-8
'''
Date:20160923
@author: zhaozhiyong
'''
import numpy as np
def load_data(file_path):
f = open(file_path)
data = []
for line in f.readlines():
row = [] # 记录每一行
lines = line.strip().split("\t")
for x in lines:
row.append(float(x)) # 将文本中的特征转换成浮点数
data.append(row)
f.close()
return np.mat(data)
def distance(vecA, vecB):
dist = (vecA - vecB) * (vecA - vecB).T
return dist[0, 0]
def randCent(data, k):
n = np.shape(data)[1] # 属性的个数
centroids = np.mat(np.zeros((k, n))) # 初始化k个聚类中心
for j in xrange(n): # 初始化聚类中心每一维的坐标
minJ = np.min(data[:, j])
rangeJ = np.max(data[:, j]) - minJ
# 在最大值和最小值之间随机初始化
centroids[:, j] = minJ * np.mat(np.ones((k , 1))) + np.random.rand(k, 1) * rangeJ
return centroids
def kmeans(data, k, centroids):
m, n = np.shape(data) # m:样本的个数,n:特征的维度
subCenter = np.mat(np.zeros((m, 2))) # 初始化每一个样本所属的类别
change = True # 判断是否需要重新计算聚类中心
while change == True:
change = False # 重置
for i in xrange(m):
minDist = np.inf # 设置样本与聚类中心之间的最小的距离,初始值为争取穷
minIndex = 0 # 所属的类别
for j in xrange(k):
# 计算i和每个聚类中心之间的距离
dist = distance(data[i, ], centroids[j, ])
if dist < minDist:
minDist = dist
minIndex = j
# 判断是否需要改变
if subCenter[i, 0] <> minIndex: # 需要改变
change = True
subCenter[i, ] = np.mat([minIndex, minDist])
# 重新计算聚类中心
for j in xrange(k):
sum_all = np.mat(np.zeros((1, n)))
r = 0 # 每个类别中的样本的个数
for i in xrange(m):
if subCenter[i, 0] == j: # 计算第j个类别
sum_all += data[i, ]
r += 1
for z in xrange(n):
try:
centroids[j, z] = sum_all[0, z] / r
except:
print " r is zero"
return subCenter
def save_result(file_name, source):
m, n = np.shape(source)
f = open(file_name, "w")
for i in xrange(m):
tmp = []
for j in xrange(n):
tmp.append(str(source[i, j]))
f.write("\t".join(tmp) + "\n")
f.close()
最终的结果为:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18