
逻辑斯谛回归&最大熵模型
逻辑斯谛回归和最大熵模型,从原理上看二者并不十分相关,不知是不是因为篇幅都相对较小,所以将这两部分内容放到一起。本文还是从原理、应用场景以及优缺点来做简要介绍。
1、逻辑斯谛回归
逻辑斯谛回归通过结合线性回归和Sigmod转换函数(f(x)=1/(1+exp(x))),将数值预测结果转换为不同类别的条件概率,取条件概率最大的类别为预测结果,从而实现样本的分类。
该模型可应用于各种分类场景。相比于其它分类算法,其最大的特点在于可以为预测的结果提供相应的概率值,即可以直观的分析每个样本分类结果的确信程度。
2、最大熵模型
最大熵模型是指:在所有满足约束条件的概率模型集合中,熵最大的模型是最好的;可以证明,在没有其它约束条件时,均匀分布模型是最大熵模型。
例如:P(A)+P(B)=1,按照最大熵模型得到P(A)=P(B)=0.5,也就是均匀分布。
可以从物理学的角度来理解该模型:根据热力学第二定理,如果没有外力干扰,系统的熵值是趋于不断增加的。由此,在没有其它额外参考信息的情况下,选择熵值最大的模型是最可靠的,因为没有外在动力时,宇宙本来就是趋于无序的。
延伸:和决策树模型的比对分析
粗看起来,上述模型似乎与在决策树中选用熵增最大的特征参量有点儿矛盾。因为熵增(即信息增益)最大,即意味着要得到熵最小的模型。
先明确一点:两个模型中关于熵的定义完全一样,均用来表征模型的有序程度。熵值越大,越是无序。但两个模型其实并不矛盾,理由如下:
1)二者应用的前提不同。对于最大熵模型而言,在所有满足约束条件的模型中,如果没有其他的参考信息,则选用熵最大的模型;而决策树模型中,由于提供了特征参量这样的额外参考信息,因此不能直接应用最大熵原理。
2)决策树并没有使用最小熵模型。我们都知道,完全生长决策树的熵是最小的,然而却常常不是最好的模型(容易“过拟合”),经过剪枝后的决策树反而能够反映真实数据分布。如果说树的分裂意味着熵的减小,则剪枝意味着熵的增加;这样看来,我们选择的其实是应用了所有已知信息之后熵较大的模型。
3、梯度下降和牛顿法
关键的,二者主要的不同在于:梯度下降采用平面去逼近最优解(要求函数一阶可导),牛顿法采用曲面去逼近(要求函数二阶可导),牛顿迭代法一般收敛的速度要快一些。
与梯度下降法(gradientdecend)对应的,还有梯度上升法(gradient boost);它们的原理相同,梯度下降常用来求最小值,梯度上升用来求最大值。我们在处理分类问题时,常常将其转换为损失函数最小化的问题,因此梯度下降更为常用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29