
大数据时代的军事管理变革
大数据是信息技术又一次颠覆性变革。随着大数据技术在军事领域获得应用,数据数量、数据分析和处理能力、数据主导决策,将是获得战场优势的关键。在数据领域,以少胜多、以弱胜强、以模糊胜透明,基本不可能,这将使作战形式发生质的变化。如何以数据为中心精确设计和指挥战争,成为军事管理的新焦点。
管理大师戴明与德鲁克曾同时提出,“不会量化就无法管理”。有了大数据,军事管理者可以更多借助量化,提升管理质量和水平。
大数据坚持管理服务战斗力的原则。管理是为提高战斗力服务的,最高目标就是确保打赢可能发生的任何战争。大数据并未改变这一根本原则,但增加了数据色彩。一方面,数据成为巩固和提高战斗力的重要因素。在新型作战环境下,战场的实时态势信息、作战指挥命令、卫星过境、气象水文信息、传感器信息等,都是以数据形式存在并且传输的。这些不同来源、不同类型的数据是提高战斗力的“生命”。缺乏对数据的有效管理和利用,打赢战争将成为不可能。在不远的将来,数据的积累和运用将成为战斗力的标志。军事管理就是将大数据渗透、应用于战斗力生成、转化和实现的全过程,提高战斗力的整体水平。另一方面,数据本身成为战争的攻防中心。当大数据成为举足轻重的武器,就可能开启一种崭新的战争形态——数据战。这将是一种以数据攻击与防护为基本手段的全新作战样式,它通过掠夺、破坏和摧毁敌方数据资源,化数据优势为战争优势。大数据不但是信息的集成,更是打击手段的综合。在大数据支撑下,跨网攻击具备了实现条件,即使是与互联网物理隔离的军事数据系统,也可能不再拥有绝对安全的保障,数据攻防将会拓展到陆、海、空、天、电等多维空间。这就决定了军事管理必须着眼于打赢未来数据战争需要,努力提高部队数据作战能力。
大数据拓展了军事管理内涵。大数据的现实存在和军事价值,使如何管理大数据成为军事管理必然要回答的问题。数据采集是数据管理的源头。目前,我军数据采集还存在零散多综合少、局部多全局少的问题。需要通过对蕴含军事意义数据的专业化获取,掌握海量数据开发利用的主动权。数据分析是数据管理的关键。目的是从经过整合的、多来源的数据中找出规律,最终实现对数据的有效管控。数据安全是数据管理的底线。既要有效地堵塞国家和军事安全数据漏洞,防止被敌方破坏和获取;又要深度挖掘和全面掌握敌方高价值的数据资源,寻求战时攻击的数据突破点。此外,也要把保护官兵的个人数据隐私提上日程。
大数据创新了军事管理方法。从技术方法看,大数据研发的机器学习算法、图像可视化手段、数据共享技术、人机互动设备等,将极大推动军事管理技术的革新。从行政方法看,大数据带给管理者最重要的机会是更准确地了解和把握部属的需求特征、兴趣爱好、行为倾向等。
管理变革比技术升级更关键。大数据有彻底改变管理艺术的潜力,运用大数据管理应注意以下几点:
树立大数据理念。大数据产生的影响绝不限于技术层面,本质上,它为我们观察世界提供了一种全新方法。我军与外军的差距,除了装备,还有管理上的代差。其原因之一是我军缺乏以数据为基础的管理。而未来军队的进步,正赖于建立这种精确的管理体系。数据才是管理的根本,每个管理者都应有这样的意识和观念。但也要警惕泛大数据化,提防什么事都穿鞋戴帽,冠大数据之名,却无大数据之实。
实施大数据战略。要站在战略的高度,以全面、前瞻的思维和方法来应对大数据。加强顶层设计。可在加强大数据资源的深度开发利用与大数据技术自主创新方面进行调整,尽快提出大数据发展战略,理清思路,明确任务。统一数据标准。为保证部队现有和潜在用户都能发现数据,应尽快制定数据标准,保证大数据的可视化、可获取和可利用。实现共享应用。所有数据都要能在全军范围应用,既满足于预期的用户及需求,也能用于预期之外的用户及需求。
研发大数据技术。大数据研发的重点,是发展前沿核心技术,以满足搜集、存储、管理、分析和共享海量数据的需求。我国在海量数据分析、大数据处理、分布式计算、数据可视化等一些大数据关键技术上,还存在不小的差距。可如果盲目地在军队中引进和使用国外的先进技术,无疑会威胁国家和军队安全。所以要下大力研发我国我军的大数据技术,把“数据主权”牢牢掌握在自己手里,为实现强军目标提供坚强的技术支持和安全保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01