
你需要知道的四类数据环境
詹姆斯·马丁提出“数据环境”概念,就是为了进行数据的有序化管理工作。他在《信息工程》和《总体数据规划方法论》中将计算机的数据环境分为4种类型,要求我们清楚地了解它们之间的区别和各自的特征。
第一类数据环境:数据文件。早期的数据处理还没有出现数据库管理系统(实际上是一种操纵数据库的软件),系统分析员和程序员根据应用的需要,用程序语言分散地设计实现各种数据文件。这是一种数据组织技术简单、相对容易实现的数据环境。但随着应用程序增加,数据文件数据剧增,会导致很高的维护费用,并且一小点应用的变化都将引起连锁反应,使修改又慢又贵,并很难进行。
第二类数据环境:应用数据库。后来,虽然出现了数据库管理系统,但系统分析员和程序员根据报表的原样“建库”。由于没有在数据分析和组织上下功夫,为分散的应用设计分散的“数据库”实际上并不具备数据库的品质,不能支持数据的共享,因此叫做“应用数据库”。实际上,这种数据环境中的信息系统像数据文件环境一样,随着应用的扩充,应用数据库也在剧增。在这种数据环境中的信息系统,其维护费用仍然很高,有时甚至高于第一类数据环境。该类数据环境还没有发挥使用数据库的主要优越性。
第三类数据环境:主题数据库。这是一种真正意义上的数据库,经过科学的规划与设计,其结构与使用它的处理过程是独立的。各种面向业务主题的数据,如顾客数据、产品数据或人事数据,通过一些共享数据库被联系和体现出来。这种主题数据库的特点是:经过严格的数据分析,建立模型需要花费时间,但其后的维护费用很低。最终(但不是立即)会使应用开发加快,并能使用户直接与这些数据库交互使用数据。建立这种数据环境,需要改变传统的系统分析方法和整个数据处理的管理方法,如果不善,也会蜕变成第二类(或者可能是第一类)数据环境。
第四类数据环境:信息检索系统。建立这种数据环境的目的是保证信息检索和快速查询的需要,以支持高层管理和辅助决策,而不是大量的事务管理。后来,称这种数据环境为数据仓库,它是面向主题的、单一的、完整的和一致的数据存储。数据从多种数据源获取,经过加工成为最终用户在一定程度上可理解的形式。可以说数据仓库是主题数据库的集成,是深加工的信息。
主题数据库与企业中的各种业务主题相关,而不是与具体的计算机应用程序相关。企业中需要建立的典型的主题数据库有:产品、客户、零部件、供应商、订货、账户、员工、文件资料、工程规范等。各种应用程序是使用这些主题数据库的,有的应用程序只存取一两个主题数据库,有的应用程序要与多个主题数据库打交道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19