京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你需要知道的四类数据环境
詹姆斯·马丁提出“数据环境”概念,就是为了进行数据的有序化管理工作。他在《信息工程》和《总体数据规划方法论》中将计算机的数据环境分为4种类型,要求我们清楚地了解它们之间的区别和各自的特征。

第一类数据环境:数据文件。早期的数据处理还没有出现数据库管理系统(实际上是一种操纵数据库的软件),系统分析员和程序员根据应用的需要,用程序语言分散地设计实现各种数据文件。这是一种数据组织技术简单、相对容易实现的数据环境。但随着应用程序增加,数据文件数据剧增,会导致很高的维护费用,并且一小点应用的变化都将引起连锁反应,使修改又慢又贵,并很难进行。
第二类数据环境:应用数据库。后来,虽然出现了数据库管理系统,但系统分析员和程序员根据报表的原样“建库”。由于没有在数据分析和组织上下功夫,为分散的应用设计分散的“数据库”实际上并不具备数据库的品质,不能支持数据的共享,因此叫做“应用数据库”。实际上,这种数据环境中的信息系统像数据文件环境一样,随着应用的扩充,应用数据库也在剧增。在这种数据环境中的信息系统,其维护费用仍然很高,有时甚至高于第一类数据环境。该类数据环境还没有发挥使用数据库的主要优越性。
第三类数据环境:主题数据库。这是一种真正意义上的数据库,经过科学的规划与设计,其结构与使用它的处理过程是独立的。各种面向业务主题的数据,如顾客数据、产品数据或人事数据,通过一些共享数据库被联系和体现出来。这种主题数据库的特点是:经过严格的数据分析,建立模型需要花费时间,但其后的维护费用很低。最终(但不是立即)会使应用开发加快,并能使用户直接与这些数据库交互使用数据。建立这种数据环境,需要改变传统的系统分析方法和整个数据处理的管理方法,如果不善,也会蜕变成第二类(或者可能是第一类)数据环境。
第四类数据环境:信息检索系统。建立这种数据环境的目的是保证信息检索和快速查询的需要,以支持高层管理和辅助决策,而不是大量的事务管理。后来,称这种数据环境为数据仓库,它是面向主题的、单一的、完整的和一致的数据存储。数据从多种数据源获取,经过加工成为最终用户在一定程度上可理解的形式。可以说数据仓库是主题数据库的集成,是深加工的信息。
主题数据库与企业中的各种业务主题相关,而不是与具体的计算机应用程序相关。企业中需要建立的典型的主题数据库有:产品、客户、零部件、供应商、订货、账户、员工、文件资料、工程规范等。各种应用程序是使用这些主题数据库的,有的应用程序只存取一两个主题数据库,有的应用程序要与多个主题数据库打交道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10