京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国内普遍认可的数据分析师认证,持证者前景一片蓝海
技术爆炸,一日千里,小到网络搜索,大到人工智能,数据分析已渗透在社会的方方面面。2017年,国内有两份关于大数据人才的专业报告很好的反映了数据人才的稀缺性与重要性。
《大数据人才报告》中显示,目前全国的大数据人仅46万,未来3-5年缺口将高达150万。《2017中国大数据及AI人才发展报告》中体现了大数据人才企业招聘人数猛增6倍,平均固定年薪达38万。
在国外,美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期重要报告中也体现,仅约23%的毕业生掌握了数据科学与数据分析技能,而69%的雇主希望求职者具备数据分析技能。
2018年,随着AI与区块链泡沫的出现,大数据技术显得更为靠谱,更接地气,更加务实。人人都应具备数据分析能力,现入行数据分析职业为时不晚、恰逢其时。
(图片来源:《2017中国大数据及AI人才发展报告》)
人才稀缺,面对激烈的竞争环境,企业对数据人才的要求也更为苛刻。《CDA数据分析师人才标准大纲》自2013年以来,从1.0到2.0版本,经历了企业的实践与市场的检验,为步入数据分析领域的新人和不断成长晋升的业内人士,做着标杆性的引导与认可。
2018年,《CDA数据分析师人才标准大纲》经过CDA Institute、CDMS与经管之家CDA数据分析研究院反复研究与打磨,经过来自业界和学界的专家学者组成的CDA教研团队与命题委员会逐条审核与修改,更新为了3.0版本。
最新(第八届)CDA认证大纲更加贴近商业数据分析应用,更加强调理论与实践的结合,满足了时代对新型数据分析人才的要求,让CDA持证者在企业工作与职业发展中更具竞争力。
CDA考试大纲是CDA命题组基于CDA数据分析师等级认证标准而设定的一套科学、详细、系统的考试纲要。考纲规定并明确了CDA数据分析师认证考试的具体范围、内容和知识点。本次3.0大纲调整了部分知识模块的比例,在领悟、熟知、应用三个层次细化了知识点的说明,特别是在应用部分增加了考生对于具体业务场景的运用要求。
在LEVEL 1数据建模分析模块的聚类分析部分,结合了客户画像、客户细分、商品聚类、离群值检验(欺诈、反洗钱)等业务运用场景。在对应分析部分增加了客户满意度分析、市场绩效及产品细分等场景下的运用。另外还强调了考生解读数据的能力和撰写数据报告的能力等等。详细更新点可见第八届CDA数据分析师认证考试大纲内容。
CDA认证符合实际、贴近前沿、品质规范。越来越多的CDA学员及持证人走向世界各地,企业招募人才供不应求,CDA数据分析师品牌得到了来自学界与实业界的教授、专家、从业者的口碑相传,国内外各行业的企业、单位、机构的接纳认可。
随着德勤(Deloitte)将CDA认证纳入员工手册,作为员工技能的要求之一;随着中国电信、苏宁等企业引进CDA人才参考标准,在企业内部进行CDA认证考试。CDA认证不断受到市场的考验,成为了大数据及数据分析领域通用人才专业名词,逐步走向行业标杆。
CDA数据分析师持证人大多就业于各行业数据分析专业岗位,如:业务数据分析师,数据挖掘工程师,建模分析师,大数据分析师,大数据工程师,首席数据官等职位。就业企业包括中国银行、IBM、联想、移动、华为、尼尔森、市级政府部门等数千家企业,CDA持证人在企业专业数据分析岗位上得到了普遍认可。
未来是大数据、人工智能、区块链等高新技术不断发展的年代,企业对于大数据及数据分析人才的需求和要求会越来越高,CDA将与时俱进,不断迭代,不断引进前沿技术,丰富教学资源,更新体系标准,极力推动大数据及数据分析的人才建设和发展。相信,CDA在数据分析人才教育领域的努力,会让更多人了解数据分析,学会数据分析;让更多业内人士能在DT时代成为更具竞争力的新型抢手人才;让企业更快速高效的找到的更适合自身需要的数据分析人才。CDA数据分析师的前景将是一片蓝海。
第八届CDA数据分析师认证考试报名已开放!
大纲下载地址:https://www.cda.cn/view/3.html(页面中部)
CDA认证报名通道(阅读原文):http://exam.cda.cn/
加入CDA认证考试交流群!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15