
国内普遍认可的数据分析师认证,持证者前景一片蓝海
技术爆炸,一日千里,小到网络搜索,大到人工智能,数据分析已渗透在社会的方方面面。2017年,国内有两份关于大数据人才的专业报告很好的反映了数据人才的稀缺性与重要性。
《大数据人才报告》中显示,目前全国的大数据人仅46万,未来3-5年缺口将高达150万。《2017中国大数据及AI人才发展报告》中体现了大数据人才企业招聘人数猛增6倍,平均固定年薪达38万。
在国外,美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期重要报告中也体现,仅约23%的毕业生掌握了数据科学与数据分析技能,而69%的雇主希望求职者具备数据分析技能。
2018年,随着AI与区块链泡沫的出现,大数据技术显得更为靠谱,更接地气,更加务实。人人都应具备数据分析能力,现入行数据分析职业为时不晚、恰逢其时。
(图片来源:《2017中国大数据及AI人才发展报告》)
人才稀缺,面对激烈的竞争环境,企业对数据人才的要求也更为苛刻。《CDA数据分析师人才标准大纲》自2013年以来,从1.0到2.0版本,经历了企业的实践与市场的检验,为步入数据分析领域的新人和不断成长晋升的业内人士,做着标杆性的引导与认可。
2018年,《CDA数据分析师人才标准大纲》经过CDA Institute、CDMS与经管之家CDA数据分析研究院反复研究与打磨,经过来自业界和学界的专家学者组成的CDA教研团队与命题委员会逐条审核与修改,更新为了3.0版本。
最新(第八届)CDA认证大纲更加贴近商业数据分析应用,更加强调理论与实践的结合,满足了时代对新型数据分析人才的要求,让CDA持证者在企业工作与职业发展中更具竞争力。
CDA考试大纲是CDA命题组基于CDA数据分析师等级认证标准而设定的一套科学、详细、系统的考试纲要。考纲规定并明确了CDA数据分析师认证考试的具体范围、内容和知识点。本次3.0大纲调整了部分知识模块的比例,在领悟、熟知、应用三个层次细化了知识点的说明,特别是在应用部分增加了考生对于具体业务场景的运用要求。
在LEVEL 1数据建模分析模块的聚类分析部分,结合了客户画像、客户细分、商品聚类、离群值检验(欺诈、反洗钱)等业务运用场景。在对应分析部分增加了客户满意度分析、市场绩效及产品细分等场景下的运用。另外还强调了考生解读数据的能力和撰写数据报告的能力等等。详细更新点可见第八届CDA数据分析师认证考试大纲内容。
CDA认证符合实际、贴近前沿、品质规范。越来越多的CDA学员及持证人走向世界各地,企业招募人才供不应求,CDA数据分析师品牌得到了来自学界与实业界的教授、专家、从业者的口碑相传,国内外各行业的企业、单位、机构的接纳认可。
随着德勤(Deloitte)将CDA认证纳入员工手册,作为员工技能的要求之一;随着中国电信、苏宁等企业引进CDA人才参考标准,在企业内部进行CDA认证考试。CDA认证不断受到市场的考验,成为了大数据及数据分析领域通用人才专业名词,逐步走向行业标杆。
CDA数据分析师持证人大多就业于各行业数据分析专业岗位,如:业务数据分析师,数据挖掘工程师,建模分析师,大数据分析师,大数据工程师,首席数据官等职位。就业企业包括中国银行、IBM、联想、移动、华为、尼尔森、市级政府部门等数千家企业,CDA持证人在企业专业数据分析岗位上得到了普遍认可。
未来是大数据、人工智能、区块链等高新技术不断发展的年代,企业对于大数据及数据分析人才的需求和要求会越来越高,CDA将与时俱进,不断迭代,不断引进前沿技术,丰富教学资源,更新体系标准,极力推动大数据及数据分析的人才建设和发展。相信,CDA在数据分析人才教育领域的努力,会让更多人了解数据分析,学会数据分析;让更多业内人士能在DT时代成为更具竞争力的新型抢手人才;让企业更快速高效的找到的更适合自身需要的数据分析人才。CDA数据分析师的前景将是一片蓝海。
第八届CDA数据分析师认证考试报名已开放!
大纲下载地址:https://www.cda.cn/view/3.html(页面中部)
CDA认证报名通道(阅读原文):http://exam.cda.cn/
加入CDA认证考试交流群!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16