京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小议Python中自定义函数的可变参数的使用及注意点
Python函数的默认值参数只会在函数定义处被解析一次,以后再使用时这个默认值还是一样,这在与可变参数共同使用时便会产生困惑,下面就来小议Python中自定义函数的可变参数的使用及注意点
可变参数
Python的可变参数有两种,一种是列表类型,一种是字典类型。列表类型类似 C 中的可变参数,定义方式为
def test_list_param(*args) :
for arg in args :
print arg
其中 args 是一个 tuple。
字典类型的可变参数:
def test_dict_param(**args) :
for k, v in args.iteritems() :
print k, v
其中 args 是一个 dictionary
可以分别传递 tuple 和 dictionary 给相应的可变参数,格式如下
a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)
带默认参数的函数
函数的带默认值参数能够很大程度上方便我们使用:一般情况下可以省略传参使用参数的默认值,也可以主动传参;调用的时候也不用在意参数的顺序方便使用,并且直接、显式;甚至还能用来当作魔法值,做一些逻辑上的控制。
但是由于python的默认值参数只会在函数定义处被解析一次,此后每次调用函数的时候,默认值参数都会是这个值了。碰到一些不可变的数据类型比如:整型,字符串,元祖之类的还好,但如果碰到可变类型的数据比如数组的话,就会有发生一些意想不到的事情。
让我们举一个简单的例子说明一下:
def add_to(num, target=[]):
target.append(num)
print id(target), target
add_to(1)
# Output: 39003656, [1]
add_to(2)
# Output: 39003656, [1, 2]
add_to(3)
# Output: 39003656, [1, 2, 3]
很显然如果你是想每次调用函数都能得到一个新的包含期望结果的数组,肯定不能如愿了。函数add_to的参数target在函数第一次被解析的时候会被赋值成空的数组,因为只会被解析一次,以后每次调用的时候都会在这个target变量的基础上进行操作,变量的id值也完全一样。想要得到预期的结果,可以为这种可变数据类型的参数指定一个None来表示空值:
a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)
在python的世界里,参数是按标识符传递(粗暴点解释就是按引用传递的),你需要担心的是参数的类型是否是可变的:
>>> def test(param1, param2):
... print id(param1), id(param2)
... param1 += 1
... param2 += 1
... print id(param1), id(param2)
...
>>> var1 = 1
>>> var2 = 2
>>> print id(var1), id(var2)
36862728 36862704
>>> test(var1, var2)
36862728 36862704
36862704 36862680
可变的数据类型,函数局部作用域里面的任何改变会保留在数据上;不可变的数据类型,发生的任何改变都只会体现在新生成的局部变量上,如同上面的列子中所示的效果,读者可以对比一下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22