
一名合格的数据分析师该怎样解释“买不起房”这件事
北京很大,大到容得下两千多万人的吃喝拉撒睡。北京很小,小到装不下一个外地人的北漂梦。
我是一名北漂,来北京7年了,7年时间里不断地租房搬家,心里一直想买一套自己的房子,而北京的房价让我望而却步,打消了念头。又到年底,双方父母催婚催的厉害,在一起5年,确实要考虑结婚了。结婚就要买房,这又让我打起买房的主意,然而以我现在的积蓄,距离在北京买一套房还差多少?
链家网是北京知名的房屋买卖平台,于是我爬取了链家的二手房买卖数据,不要问为什么看二手房...爬虫代码如下:
数据清洗整理
将数据进行清洗处理后,剩余2999条数据,其中price是房屋单价(元/平米),district是所在区域,floor是房屋层高,area是房屋面积,subway是周围有无地铁,rooms是卧室数量,halls是客厅数量。北京的房价受学区房影响较大,但数据不好获取,这里就不做考虑了。
各区域在售房屋情况分析
发现朝阳区在售二手房屋最多,海淀、丰台、昌平其次。
北京房屋价格分析
北京二手房屋均价为65254元,中位数为61562元。
大部分房屋价格集中在35000-80000元区间。
地铁对房屋价格的影响
房屋附近有地铁的价格明显高于房屋附近没有地铁的价格。
分析房屋所在地域对房屋价格的影响
北京房价最便宜的区域是房山区,最贵的是西城区,价格分布如下:
通过箱线图,发现在朝阳区、大兴区、昌平区有很多异常值,也就是说有个别房屋价格明显高于本区平均价格。
绘制北京房价地图,颜色越深,房价越高,结果如下:
分析房屋面积对房屋价格的影响
没有明显的线性关系,说明房屋面积对房屋单价影响不大。
建立线性回归模型,预测房屋价格
前文再对价格画直方图时,发现北京的房价不符合正态分布,为了模型更加精准,先将价格取对数,取对数后的价格分布接近正态分布。
进行建模前需要筛选变量,使用向前选择法筛选变量时,所有变量都可以放入模型,于是尝试第一次建立回归模型。
卧室数量、客厅数量对价格不显著,于是将rooms、halls变量剔除后继续建模,R**2与aic并未受明显影响,模型合理。
通过建立的模型对原数据进行预测,用预测值减去真实值,差值在0附近波动,没有过多异常值,说明模型较为合理。
到此,基于链家网的二手房价格简易分析完成,而我想在海淀区买一套100平米的房子,最好在中层,附近要有地铁,方便上班出行。根据模型预测,购买类似房产的单价是82092元,总价是8209200,首付是35%,按我现在的工资水平..还要再干5年才能攒够首付…算了,我还是想想如何应对父母催婚吧…
PS:会一些数据分析,会发现生活很有趣,如果想要学习数据分析技能,可以参加CDA数据分析就业班,三个月转行数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15