
谷歌教你学 AI-第五讲模型可视化
Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。今天让我们来看到第五讲模型可视化。
观看更多国外公开课,点击"阅读原文"
回顾之前内容:
谷歌教你学 AI -第一讲机器学习是什么?
谷歌教你学 AI -第二讲机器学习的7个步骤
谷歌教你学 AI -第三讲简单易懂的估算器
谷歌教你学 AI -第四讲部署预测模型
附有中文字幕的视频如下:
AI Adventures--第五讲模型可视化
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
在本期的AI Adventures中,让我们一起了解如何使用TensorBoard进行模型可视化以及调试问题!
当你知道问题所在时,调试问题就容易得多。 但是随着在复杂的模型中输入训练数据,情况则会变得复杂起来。幸运的是,TensorBoard让这变得简单。
与传统编程不同,机器学习中通常有很多难预测的因素。数据的质量,模型的细微差别,需要选择的众多参数,这些都会影响到训练过程的成败。
如果有办法能够在训练过程中跟踪这些指标,并同时观察我们创建的模型结构,那么这将让我们能够调整模型并调试所看到的问题。
如今,这个抽象过程可能很难进行可视化,但幸运的是,TensorFlow有内置的解决方案!
TensorBoard
让我们看到TensorBoard,TensorFlow的内置可视化工具,这能让你完成各种事情,从观察模型结构到查看培训进度等等。
TensorFlow用到了当中计算图的理念。
这意味着,不是在传统意义上添加两个数字,而是构建一个添加操作符,并将添加的值一起作为输入。
所以当我们想到用TensorFlow训练模型时,它实际上是把所有内容作为“图表”的一部分来执行。 TensorBoard将这些模型可视化,从而你可以看到它们的样子,更重要的是,确保你已按照自己的需求连接了所有部分。
模型图可视化
下面是一个比较复杂的例子,用TensorFlow把模型图进行可视化。
TensorBoard能让我们进行缩放,平移和展开元素从而查看更多细节。这意味着我们可以在不同抽象层查看模型,这能减少视觉的复杂程度。
但是,TensorBoard不仅仅能够显示模型结构。它还可以用图表很好地绘制指标的进展。
通常,我们会绘制正确率,损失,交叉熵等等。 取决不同模型,重要的指标也不同。TensorFlow的估算器中有很多预先配置在TensorBoard中的值,所以这是一个不错的开始。
TensorBoard可以显示各种信息,包括直方图、分布、嵌入。以及模型中的音频,图片和文本数据等。这些将在之后的视频中讲到。
线性模型
我们看到下一个例子,在TensorBoard中用到我们一直在使用的线性模型。 首先我们启动TensorBoard,并指向保存了模型结构和检查点文件的目录,接着运行:
tensorboard --logdir=”/tmp/iris_model/”
这将在端口6006启动本地服务器。是的,这拼写为GOOG(即谷歌)。转到本地主机:6006,接着看到本地机器上的TensorBoard。
我们可以看到一些标量指标是默认提供的,以及线性分类器。 我们也可以展开和放大任意图表。
可以通过双击缩小。 你可以看到我们的训练进展得很好,损失在随着时间减少。 还可以确定的是,训练还没有完成,因为及时在训练尾声,损失仍然按一定速度下降。这也提示我们,也许要加长训练过程,从而充分利用该模型。
图表标签
现在让我们看到图表标签。 注意,表面上的图表非常简单。
我们可以通过单击加号展开每个块,从而查看更多信息。 例如,如果展开“线性”块,我们会看到它由多个子组件组成。 我们可以通过放大和缩小,点击并拖动来进行平移。
还要注意,我们给特征列命名为“flower_features”显示为命名的图表组件。
这可以帮助调试和识别图表的连接方式。 TensorFlow的大部分操作都可以命名,因此这是辨明模型的的好方法。
本期我们了解到,将模型和重要的训练指标进行可视化,机器学习会变得更轻松、更有趣。
TensorBoard就能让你轻松做到这点,更好的是它就内置于TensorFlow当中。
下次当你需要对机器学习进行可视化,可以试着用用TensorBoard,揭示背后的原理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22