
大数据如何成为安全生产“利器”
信息化一方面加速了安全生产事故信息传播速度,导致安全生产的被关注度空前高涨,另一方面,也为解决安全生产问题带来了“利器”——大数据。当前,大数据正以惊人的速度渗透到越来越多的领域,电商、零售商、IT企业等应用大数据的成功案例屡见不鲜。大数据在安全生产中的应用,最基本的功能就是从海量的安全生产数据中寻找事故发生的规律、预测未来,从而对症下药,有效遏制事故的发生。同时,大数据在提升安全监管能力和明确安全责任方面也可发挥重要作用。
大数据对安全生产意义非凡
将大数据用到安全生产中,可提升源头治理能力,降低事故的发生。
大数据应用可及时准确地发现事故隐患,提升排查治理能力。当前,企业的安全生产隐患排查工作主要靠人力,通过人的专业知识去发现生产中存在的安全隐患。这种方式易受到主观因素影响,且很难界定安全与危险状态,可靠性差。通过应用海量数据库,建立计算机大数据模型,可以对生产过程中的多个参数进行分析比对,从而有效界定事物状态是否构成安全隐患。美国矿难追责就是大数据在安全生产领域应用的成功案例。2010年美国网民在网上追责过程中,通过对梅西公司下属的另外一家煤矿鲁比煤矿的安全监管、查处等数据进行分析,发现该煤矿同样岌岌可危,随时有“引爆”的可能。
大数据应用可揭示事故规律,为安全决策提供理论支撑。当前,在安全生产管理中,由于缺少有效的分析工具,缺少对事故规律的认识,导致我国对于安全生产主要采取“事后管理”的方式,缺少事前预防,在事故发生后才分析事故原因、追究事故责任、制定防治措施。这种方式存在很大局限性,不能达到从源头上防止事故的目的。大数据的发展为海量事故数据提供了有效的分析工具。1931年,美国安全工程师海因里希通过分析55万起工伤事故的发生概率,提出了着名的海因里希“事故金字塔”理论,论证了加强日常安全管理、细节管理对消除不安全行为和不安全状态的重大作用。将大数据原理运用到安全生产中,通过对海量安全生产事故数据进行分析,分析和查找事故发生的季节性、周期性、关联性等规律、特征,从而找出事故根源,有针对性地制定预防方案,提升源头治理能力,降低安全生产事故的发生。
大数据应用可完善安全生产事故追责制度。从大量的事故调查处理情况可以看出,我国的安全生产事故追责制度还存在许多不完善之处,如事故取证难、事故资料搜集难、责任认定难等。美国大数据下的矿难追责制度给予了很好的启示。2010年,美国西弗吉尼亚州发生死亡29人的矿难,由于该煤矿的监管记录保存完整,每条记录都包括检查的时间、结果、违反的法律条款、处理的意见、罚款金额、已缴纳的金额、煤矿是否申诉等数据项。逾千条的监管记录为事故追责提供了重要证据,最终事故认定说明煤矿安全健康局无监管失职,出事煤矿所属公司应承担主要责任。可见完善的监管、执法数据库对完善安全生产事故追责制度异常重要。
我国安全生产准备还不充分
缺少高性能大数据分析工具是各领域应用大数据普遍面临的问题。
基础数据准备不充分,数据库建设亟待完善。第一,虽然我国具备安全监管职责的部门都建有安全生产相关的数据库,但由于其数据搜集、数据整理等能力的不足,造成数据库完整性、规范性方面还存在很大缺陷。第二,目前我国建筑、交通、铁路、民航、民爆和通信行业的安全监管职责在行业管理部门,石化、化工、冶金等其他行业的安全监管职责在安监部门,各部门建立的事故信息、监管信息等数据库没有形成统一的标准,为数据衔接造成很大局限。第三,信息化主管部门,在协调数据库建设和应用,以及先进信息技术推广和信息化资源配置等方面的作用没有得到充分发挥。
缺少数据分析工具,信息公开力度不够。第一,大数据是信息化时代的产物,虽然近年我国在两化融合促进安全生产、安全生产信息化等方面做了许多工作,也取得了很大的进步,但总体来讲我国安全生产信息化水平还较低,多收集少应用、重事后轻事前等问题突出,为大数据的应用带来了阻碍。第二,缺少高性能大数据分析工具,这也是各领域应用大数据普遍面临的问题,如果没有高性能分析工具,大数据的价值就得不到释放。第三,自“政府信息公开条例”颁布实施以来,安全生产信息公开工作取得了较大突破,但相比美、日等国,我国安全生产的信息公开力度很不够,特别是在安全监管信息的公开方面。
人才准备不充分,专业人才不足。大数据是一门新技术,且技术含量较高,大数据建设的每个环节都需要依靠专业人员完成,其关键环节数据分析是基于预言建模或未来趋势分析,传统的数据分析师并不具备开发预言分析应用程序模型的技能,安全生产领域的相应人才更是少之又少。
安全生产应做好准备迎接大数据
要在现有基础上加大力度,特别是做好事故信息和安全监管信息公开。
一是完善数据库,做好数据库衔接。安监、工信、建筑、交通、民航等具有安全监管职责的部门应做好安全生产相关数据的采集、整理和存储工作,建立和完善安全生产相关数据库,包括事故数据库、监管信息数据库等。各部门应统一安全生产相关数据库建设标准,事故数据库、监管信息数据库等应做好衔接。信息化主管部门做好相关协调和保障工作,建立部门间协调机制,保障安全生产相关数据的有效应用。
二是加强安全生产信息化建设,做好信息公开工作。进一步深化两化融合促进安全生产、安全生产信息化等工作,在物联网发展专项等资金中加大对安全生产的支撑力度;加强海量数据分析工具的开发和利用,推进大数据价值尽快实现;在现有信息公开的基础上加大信息公开力度,特别是做好事故信息和安全监管信息的公开,并保障信息的真实可靠。
三是以人才推动大数据应用进程。设置教学学科,建立大数据相关人才培养计划;加强与美、日等发达国家之间的人才交流,建立人才合作机制;建立人才引进机制,引进国外高端人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15