
大数据如何成为安全生产“利器”
信息化一方面加速了安全生产事故信息传播速度,导致安全生产的被关注度空前高涨,另一方面,也为解决安全生产问题带来了“利器”——大数据。当前,大数据正以惊人的速度渗透到越来越多的领域,电商、零售商、IT企业等应用大数据的成功案例屡见不鲜。大数据在安全生产中的应用,最基本的功能就是从海量的安全生产数据中寻找事故发生的规律、预测未来,从而对症下药,有效遏制事故的发生。同时,大数据在提升安全监管能力和明确安全责任方面也可发挥重要作用。
大数据对安全生产意义非凡
将大数据用到安全生产中,可提升源头治理能力,降低事故的发生。
大数据应用可及时准确地发现事故隐患,提升排查治理能力。当前,企业的安全生产隐患排查工作主要靠人力,通过人的专业知识去发现生产中存在的安全隐患。这种方式易受到主观因素影响,且很难界定安全与危险状态,可靠性差。通过应用海量数据库,建立计算机大数据模型,可以对生产过程中的多个参数进行分析比对,从而有效界定事物状态是否构成安全隐患。美国矿难追责就是大数据在安全生产领域应用的成功案例。2010年美国网民在网上追责过程中,通过对梅西公司下属的另外一家煤矿鲁比煤矿的安全监管、查处等数据进行分析,发现该煤矿同样岌岌可危,随时有“引爆”的可能。
大数据应用可揭示事故规律,为安全决策提供理论支撑。当前,在安全生产管理中,由于缺少有效的分析工具,缺少对事故规律的认识,导致我国对于安全生产主要采取“事后管理”的方式,缺少事前预防,在事故发生后才分析事故原因、追究事故责任、制定防治措施。这种方式存在很大局限性,不能达到从源头上防止事故的目的。大数据的发展为海量事故数据提供了有效的分析工具。1931年,美国安全工程师海因里希通过分析55万起工伤事故的发生概率,提出了着名的海因里希“事故金字塔”理论,论证了加强日常安全管理、细节管理对消除不安全行为和不安全状态的重大作用。将大数据原理运用到安全生产中,通过对海量安全生产事故数据进行分析,分析和查找事故发生的季节性、周期性、关联性等规律、特征,从而找出事故根源,有针对性地制定预防方案,提升源头治理能力,降低安全生产事故的发生。
大数据应用可完善安全生产事故追责制度。从大量的事故调查处理情况可以看出,我国的安全生产事故追责制度还存在许多不完善之处,如事故取证难、事故资料搜集难、责任认定难等。美国大数据下的矿难追责制度给予了很好的启示。2010年,美国西弗吉尼亚州发生死亡29人的矿难,由于该煤矿的监管记录保存完整,每条记录都包括检查的时间、结果、违反的法律条款、处理的意见、罚款金额、已缴纳的金额、煤矿是否申诉等数据项。逾千条的监管记录为事故追责提供了重要证据,最终事故认定说明煤矿安全健康局无监管失职,出事煤矿所属公司应承担主要责任。可见完善的监管、执法数据库对完善安全生产事故追责制度异常重要。
我国安全生产准备还不充分
缺少高性能大数据分析工具是各领域应用大数据普遍面临的问题。
基础数据准备不充分,数据库建设亟待完善。第一,虽然我国具备安全监管职责的部门都建有安全生产相关的数据库,但由于其数据搜集、数据整理等能力的不足,造成数据库完整性、规范性方面还存在很大缺陷。第二,目前我国建筑、交通、铁路、民航、民爆和通信行业的安全监管职责在行业管理部门,石化、化工、冶金等其他行业的安全监管职责在安监部门,各部门建立的事故信息、监管信息等数据库没有形成统一的标准,为数据衔接造成很大局限。第三,信息化主管部门,在协调数据库建设和应用,以及先进信息技术推广和信息化资源配置等方面的作用没有得到充分发挥。
缺少数据分析工具,信息公开力度不够。第一,大数据是信息化时代的产物,虽然近年我国在两化融合促进安全生产、安全生产信息化等方面做了许多工作,也取得了很大的进步,但总体来讲我国安全生产信息化水平还较低,多收集少应用、重事后轻事前等问题突出,为大数据的应用带来了阻碍。第二,缺少高性能大数据分析工具,这也是各领域应用大数据普遍面临的问题,如果没有高性能分析工具,大数据的价值就得不到释放。第三,自“政府信息公开条例”颁布实施以来,安全生产信息公开工作取得了较大突破,但相比美、日等国,我国安全生产的信息公开力度很不够,特别是在安全监管信息的公开方面。
人才准备不充分,专业人才不足。大数据是一门新技术,且技术含量较高,大数据建设的每个环节都需要依靠专业人员完成,其关键环节数据分析是基于预言建模或未来趋势分析,传统的数据分析师并不具备开发预言分析应用程序模型的技能,安全生产领域的相应人才更是少之又少。
安全生产应做好准备迎接大数据
要在现有基础上加大力度,特别是做好事故信息和安全监管信息公开。
一是完善数据库,做好数据库衔接。安监、工信、建筑、交通、民航等具有安全监管职责的部门应做好安全生产相关数据的采集、整理和存储工作,建立和完善安全生产相关数据库,包括事故数据库、监管信息数据库等。各部门应统一安全生产相关数据库建设标准,事故数据库、监管信息数据库等应做好衔接。信息化主管部门做好相关协调和保障工作,建立部门间协调机制,保障安全生产相关数据的有效应用。
二是加强安全生产信息化建设,做好信息公开工作。进一步深化两化融合促进安全生产、安全生产信息化等工作,在物联网发展专项等资金中加大对安全生产的支撑力度;加强海量数据分析工具的开发和利用,推进大数据价值尽快实现;在现有信息公开的基础上加大信息公开力度,特别是做好事故信息和安全监管信息的公开,并保障信息的真实可靠。
三是以人才推动大数据应用进程。设置教学学科,建立大数据相关人才培养计划;加强与美、日等发达国家之间的人才交流,建立人才合作机制;建立人才引进机制,引进国外高端人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28