
这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。
毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的。
在这篇文章中,我将带着你了解一些基本的图片特征处理。data massaging
依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库、表、文本等中进行。这是如何对图片进行处理的呢?我们将看到图片是怎么存储在硬盘中的,同时我们可以通过使用基本的操作来处理图片。
导入图片
在python中导入图片是非常容易的。下面的代码就是python如何导入代码的:
代码解释:
这幅图片有一些颜色和许多像素组成,为了形象这幅图片是如何存储的,把每一个像素想象成矩阵中的每一个元素。现在这些元素包含三个不同的密度信息,分别为颜色红、绿、蓝(RGB)。所以一个RGB的图片就变成了三维的矩阵。每一个数字就是颜色的密度(RGB)
让我们来看看一些转化:
就像你在上面看到的一样,我们对三个颜色维度进行了一些操作转变。黄色不是一种直接表示的颜色,它是红色和绿色的组合色。我们通过设置其他颜色密度值为零而得到了这些变化。
将图像转换为二维矩阵
处理图像的三维色有时可能是很复杂和冗余的。如果我们压缩图像为二维矩阵,在特征提取后,它将变得更简单。这是通过灰度图像或二值化(Binarizing)图像。当图片显示为不同灰色强度组合时灰度图像比二值化(Binarizing)图像颜色更加饱满,而二值化(binarzing)只是简单的构建一个充满0和1的二维矩阵而已。
这里将叫你如何将RGB图片转变成灰度图像:
就如你所见,图片的维度已经降为了两种灰度值了,然而图片的特征在两幅图片中依然清晰可见。这就是为什么灰色图像在硬盘上存贮更加节约空间。
现在让我们来二值化灰色图像,这是通过找到阀值和灰色度像素标志(flagging the pixels of Grayscale)。在这篇文章中我已经通过Otsu‘s方法来找到阀值的,Otsu‘s方法是通过最大化两类不同像素点之间的距离来计算最优阀值的,也就是说这个阀值最小化了同类间的变量值。
模糊化图片
本文最后部分我们将介绍更多有关特征提取的内容:图像模糊。灰度或二值图像有时需要捕获更多的图像而模糊图像在这样的场景下是非常方便的。例如,在这张图片如果铁路轨道比鞋子更加重要,模糊处理将会添加跟多的值。从这个例子中我们对模糊处理变得更清晰。模糊算法需要将邻近像素的加权平均值加到周围每个颜色像素中。下面是一个模糊处理的例子:
对上面的照片模糊处理后,我们清楚地看到鞋已经与铁路轨道具有相同的密度等级。因此,在许多场景中这种技术非常方便。
让我们看一个实际例子。我们想在一个小镇的照片上统计的人数。但是照片上还有一些建筑图像。现在建筑背后的人的颜色强度会低于建筑本身。因此,这些人我们就难以计数。模糊处理场景后才能平衡建筑和人在图像中的颜色强度。
完整的代码:
image = imread(r"C:\Users\Tavish\Desktop\7.jpg")
show_img(image)
red, yellow = image.copy(), image.copy()
red[:,:,(1,2)] = 0
yellow[:,:,2]=0
show_images(images=[red,yellow], titles=['Red Intensity','Yellow Intensity'])
from skimage.color import rgb2gray
gray_image = rgb2gray(image)
show_images(images=[image,gray_image],titles=["Color","Grayscale"])
print "Colored image shape:", image.shape
print "Grayscale image shape:", gray_image.shape
from skimage.filter import threshold_otsu
thresh = threshold_otsu(gray_image)
binary = gray_image > thresh
show_images(images=[gray_image,binary_image,binary],titles=["Grayscale","Otsu Binary"])
from skimage.filter import gaussian_filter
blurred_image = gaussian_filter(gray_image,sigma=20)
show_images(images=[gray_image,blurred_image],titles=["Gray Image","20 Sigma Blur"])
总结
以上就是本文关于python实现图片处理和特征提取详解的全部内容,希望对大家有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18