京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		R语言使用boosting方法对数据分类与交叉验证
数据分类说明
与bagging方法类似,boosting算法也是先获得简单的分类器,然后通过调整错分样本的权重逐步改进分类器,使得后续分类器能够学习前一轮分类器,adabag实现了AdaBoost.M1和SAMME两个算法,因此用户能够使用adabag包实施集成学习。
数据分类操作
	导入包
library(rpart)
library(adabag)
调用adabag包的boosting函数分类器:
churn.boost = boosting(churn ~ .,data = trainset,mfinal = 10,coeflearn = "Freund",boos = FALSE,control = rpart.control(maxdepth = 3))
使用boosting训练模型对测试数据集进行分类预测:
churn.boost.pred = predict.boosting(churn.boost,newdata = testset)
基于预测结果生成分类表:
 churn.boost.pred$confusion
               Observed Class
Predicted Class yes  no
            no   41 858
            yes 100  19
根据分类结果计算平均误差:
churn.boost.pred$error
[1] 0.0589391
数据分类原理
boosting算法的思想是通过对弱分类器(单一决策树)的“逐步优化”,使之成为强分类器。假定当前在训练集中存在n个点,对其权重分别赋值Wj(0<= j < n),在迭代的学习过程中(假定迭代次数为m),我们将根据每次迭代的分类结果,不断调整这些点的权重,如果当前这些点分类是正确的,则调低其权值,否则,增加样例点的权值。这样,当整个迭代过程结束时,算法将得到m个合适的模型,最终,通过对每棵决策树加权平均得到最后的预测结果,权值b由每棵决策树的分类质量决定。

bagging和boosting都采用了集成学习的思想,即将多个弱分类器组成强分类器,两者的不同在于,bagging是组合独立的模型,而boosting则通过在迭代的过程学习的过程中尽可能用正确的分类模型来降低预测误差。与bagging类似,用户也需要指定用于分类的模型的公式与分类数据集,用户还要自己指定诸如迭代次数(mfinal),权重更新系数(coeflearn)、观测值权重(boos)以及rpart的控制方法(单一决策树)等参数,本例中迭代次数为设置为10,采用Freund(AdaBoost.M1算法实现的方法)作为系数(coeflearn),设置boos的值是“false”,最大深度为3。
交叉验证说明
adabag包支持对boosting方法的交叉验证,该功能可以通过boosting.cv实现。
交叉验证操作
获得boosting方法交叉验证后的最小估计错误:
调用boosting.cv对训练数据集实施交叉验证:
churn.boost.cv = boosting.cv(churn ~ .,v = 10,data = trainset,mfinal = 5,control=rpart.control(cp = 0.01))
从boosting结果生成混淆矩阵
churn.boost.cv$confusion
               Observed Class
Predicted Class  yes   no
            no   103 1936
            yes  239   37
	得到boosting的平均误差:
churn.boost.cv$error
[1] 0.06047516
交叉验证原理
函数参数v值设置为10,mfinal的值设置为5,boosting算法会执行一个5次迭代的10折交叉验证,另外可以设置参数进行rpart的匹配控制。我们将复杂度参数设置为0.01。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28