京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言基于模型的聚类方法处理
说明
与使用启发式方法而非依赖某个形式化模型的层次聚类和K均值聚类不同,基于模型的聚类算法假设存在多种数据模型,并使用EM算法来判断可能性最大的数据模型作为对数据处理进行聚簇处理的依据。
操作
使用customer数据库
mb = Mclust(customer)
fitting ...
|==============================================================================================================================| 100%
> plot(mb)
Model-based clustering plots:
1: BIC
2: classification
3: uncertainty
4: density
Selection:
选择“1”得到不同成分的BIC值:

选择“2”显示不同特征值的分类结果:

选择“3”,显示根据不同特征组合的分类不确定性:

选择4,得到不同的密度估计值

密度估计值
选择0,退出绘图菜单。
最后,使用summary函数获得似然性最大的模型以及聚簇的个数:
summary(mb)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Mclust VII (spherical, varying volume) model with 5 components:
log.likelihood n df BIC ICL
-218.6891 60 29 -556.1142 -557.2812
Clustering table:
1 2 3 4 5
11 8 17 14 10
原理
基于模型的聚类算法没有采用启发方法来构建簇,而是采用基于概率的方法,算法假设样例数据分布服从某个未知的概率分布,并试图从数据找出这个分布。有限混合模型是一类常见基于模型的方法,单个模型被分配一个线性权重再组合得到模型的结果,因而有限混合模型能够提供一个灵活的模型框架来解释数据分布概率。
假设数据y = (y1,y2,…,yn)包括n个独立多元观测值,G是模型成分的个数,有限混合模型似然公式:

其中f(k)与O(k)是混合模型中第k个模型的密度与参数,T(K)是观测样本属于第K个模型的概率。
基于模型的聚类算法处理过程可以分成以下几个步骤:
1.算法确定好模型的数量以及概率分布类型
2.构建一个有限混合模型并计算每个模型类别的后验概率
3,最后将样本观测值分配到概率最大的类别中
本节展示了如何使用基于模型的聚类算法完成数据的划分。由BIC图我们可以知道模型的BIC值,通过这个值我们可以选择簇的个数,分类结果示意图和分类不确定性示意图分别展示了根据不同的维度组合得到的组合得到的簇结果和分类不确定性。密度图显示了密度估计值的等高线图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16