
R语言基于模型的聚类方法处理
说明
与使用启发式方法而非依赖某个形式化模型的层次聚类和K均值聚类不同,基于模型的聚类算法假设存在多种数据模型,并使用EM算法来判断可能性最大的数据模型作为对数据处理进行聚簇处理的依据。
操作
使用customer数据库
mb = Mclust(customer)
fitting ...
|==============================================================================================================================| 100%
> plot(mb)
Model-based clustering plots:
1: BIC
2: classification
3: uncertainty
4: density
Selection:
选择“1”得到不同成分的BIC值:
选择“2”显示不同特征值的分类结果:
选择“3”,显示根据不同特征组合的分类不确定性:
选择4,得到不同的密度估计值
密度估计值
选择0,退出绘图菜单。
最后,使用summary函数获得似然性最大的模型以及聚簇的个数:
summary(mb)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Mclust VII (spherical, varying volume) model with 5 components:
log.likelihood n df BIC ICL
-218.6891 60 29 -556.1142 -557.2812
Clustering table:
1 2 3 4 5
11 8 17 14 10
原理
基于模型的聚类算法没有采用启发方法来构建簇,而是采用基于概率的方法,算法假设样例数据分布服从某个未知的概率分布,并试图从数据找出这个分布。有限混合模型是一类常见基于模型的方法,单个模型被分配一个线性权重再组合得到模型的结果,因而有限混合模型能够提供一个灵活的模型框架来解释数据分布概率。
假设数据y = (y1,y2,…,yn)包括n个独立多元观测值,G是模型成分的个数,有限混合模型似然公式:
其中f(k)与O(k)是混合模型中第k个模型的密度与参数,T(K)是观测样本属于第K个模型的概率。
基于模型的聚类算法处理过程可以分成以下几个步骤:
1.算法确定好模型的数量以及概率分布类型
2.构建一个有限混合模型并计算每个模型类别的后验概率
3,最后将样本观测值分配到概率最大的类别中
本节展示了如何使用基于模型的聚类算法完成数据的划分。由BIC图我们可以知道模型的BIC值,通过这个值我们可以选择簇的个数,分类结果示意图和分类不确定性示意图分别展示了根据不同的维度组合得到的组合得到的簇结果和分类不确定性。密度图显示了密度估计值的等高线图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15