京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言使用密度聚类笔法处理数据
说明
除了使用距离作为聚类指标,还可以使用密度指标来对数据进行聚类处理,将分布稠密的样本与分布稀疏的样本分离开。DBSCAN是最著名的密度聚类算法。
操作
将使用mlbench包提供的仿真数据
library(mlbench)
library(fpc)
使用mlbench库绘制Cassini问题图:
set.seed(2)
p = mlbench.cassini(500)
plot(p$x)

根据数据密度完成聚类:
ds = dbscan(dist(p$x),0.2,2,countmode = NULL,method = "dist")
> ds
dbscan Pts=500 MinPts=2 eps=0.2
1 2 3
seed 200 200 100
total 200 200 100
绘制聚类结果散点图,属于不同簇的数据点选用不的颜色:
plot(ds,p$x)

根据聚簇标号绘制的彩色散点图
调用dbscan来预测数据点可能被划分到那个簇,在样例中,首先在矩阵P中处理三个输入值:
生成y矩阵
y = matrix(0,nrow = 3,ncol = 2)
y[1,] = c(0,0)
y[2,] = c(0,-1.5)
y[3,] = c(1,1)
y
[,1] [,2]
[1,] 0 0.0
[2,] 0 -1.5
[3,] 1 1.0
预测数据点属于那个簇:
predict(ds,p$x,y)
[1] 3 1 2
原理
基于密度的聚类算法利用了密度可达以及密度相连的特点,因而适用于处理非线性聚类问题。当探讨密度聚类算法的处理过程前,我们要知道基于密度的聚类算法通常需要考虑两个参数,eps和MinPts,其中eps为最大领域半径,MinPts是领域半径范围内的最小点数。
确定好这两个参数后,如果给定对象其领域范围内的样本点个数大于MinPts,则称该对象为核心点。
如果一个对象其领域半径范围内的样本点个数小于MinPts,但紧挨着核心点,则称该对象为边缘点。
如果P对象的eps领域范围内样本点个数大于MinPts,则称该对象为核心对象。
进一步,我们还要定义两点间密度可达的概念,给定两点p和q,如果p为核心对象,且q在p的eps邻域内,则称p直接密度可以达q。如果存在一系列的点,p1,p2,…,pn。且p1 = q,pn = p,根据Eps和MinPts的值,当1<=i<=n,pi + 1 直接密度可以达pi,则称p的一般密度可以达q。
DBSCAN处理过程:
1.随机选择一个点p
2.给定Eps和MinPts的条件下,获得所有p密度可达的点
3.如果p是核心对象,则p和所有p密度可达的点被标记成一个簇,如果p是一个边缘点,找不到密度可达点,则将其标记为噪声。接着处理其它点。
4.重复这个过程,直到所有的点被处理。
本例使用dbscan算法聚类Cassini数据集,将可达距离设置为0.2,最小可达点个数设置为2,计算进度设为NULL,使用距离矩阵做为计算依据。经过算法处理,数据被划分成三个簇,每个簇的大小分别为200,200,100.通过聚簇的结果示意图也可以发现Cassini图被不同颜色区分开来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21