
python实现的 K-近邻算法代码详细解释
一、k近邻算法概述
k近邻算法采用测量不同特征值之间的距离方法进行分类。
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。
二、算法一般流程
1、收集数据:可以使用任何方法。
2、准备数据:距离计算所需要的数值,最好是结构化的数据格式。
3、分析数据:可以使用任何方法。
4、训练算法:k近邻无此步骤。
5、测试算法:计算错误率。
6、使用算法:首先输入样本数据和结构化的输出结果,然后运行k近邻算法判定输入数据分别属于哪一类分类,然后应用对计算出的分类进行处理。
三、knn伪代码
1.计算已知类别数据集中的点与需要预测点之间的距离;
2.按照距离进行递增排序;
3.选择最近的k个点;
4.统计k个点中class最多的class
5.返回预测结果
四、具体代码及解释
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#shape函数它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。它的输入参数可以使一个整数表示维度,也可以是一个矩阵
diffMat = tile(inX, (dataSetSize,1)) - dataSet#tile函数他的功能是重复某个数组。比如tile(A,n),功能是将数组A重复n次,构成一个新的数组
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)#sum是求和函数axis=1是矩阵的向量相加
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()#argsort排序
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#get() 函数返回指定键的值,如果值不在字典中返回默认值
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)#sorted函数sorted(iterable,cmp,key,reverse)参数:iterable可以是list或者iterator;cmp是带两个参数的比较函数;key 是带一个参数的函数;reverse为False或者True
return sortedClassCount[0][0]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21