
作为数据工程师或者数据分析师,经常会跟各种数据打交道,其中,获取数据这一关是无法避免的,下面,我就将自己时常工作中用到的数据连接配置模型分享出来,供大家交流。
MySQL数据库
mysql数据库是目前用的最多的数据库之一,此处我做的是读和写的接口,而删除和更新操作,一般不是分析师做的,而是开发,所以我没有做这个。
1 import MySQLdb
2 import pandas as pd
3 from sqlalchemy import create_engine
4
5 class con_analyze:
6 """数据分析平台连接"""
7
8 def __init__(self, database='myanalyze'):
9 self.database = database
10 self.conn = None
11
12 def connect(self):
13 self.conn = MySQLdb.connect(host='***', user='root', passwd='***', db=self.database,
14 charset='utf8')
15
16 def query(self, sql):
17 try:
18 self.connect()
19 data = pd.read_sql(sql, self.conn)
20 except (AttributeError, MySQLdb.OperationalError):
21 self.connect()
22 data = pd.read_sql(sql, self.conn) # 读取数据出现错误,再次连接
23 return data
24
25 def store(self, mydataframe, table_name, if_exists='replace'):
26 conn2 = "mysql+mysqldb://root:***@***:3306/%s" % self.database
27 local_engine = create_engine(conn2)
28 mydataframe.to_sql(table_name, local_engine, if_exists=if_exists, index=False, chunksize=10000)
29
30 '''还可以加一个函数用来执行单条sql语句,不仅仅是读取数据,还可以update,create等'''
作为一个链接类来使用,初始化的时候给出的conn是None,只有在执行查询函数的时候才创建链接,(链接中,我隐去了自己的host信息,你需要将自己的host填进去)
查询的时候使用了try语句,如果链接不成功或者查询不成功,就会出错,如果是链接不成功,那就在异常中再次连接。关于重复执行一段代码,有一个库大家可以关注一下:tenacity 这个库能让你实现更优雅(pythonic)的代码重复
此处读取数据是使用pandas库中的read_sql函数,此函数可以直接将查询结果转化成一个dataframe,方便了后面的分析工作
存储功能也是使用dataframe的函数tosql,此函数是将一个df直接转化成sql数据存入数据库,如果tablename存在,可以选择替换(replace)、增加(append)等,如果df很大很长,就需要设置一下chunksize参数
chunksize的设定,程序会自动将你的长达几十万行的df迭代存储,每次只存储10000行(这个数字是我设定的,你也可以改)。
看到这里,你可能会有疑问,为什么读和写的conn不一样,一个是用 MySQLdb.connect创建,而另一个是用create_engine创建。我想说的是,后面这个conn2其实可以作为读的连接参数,但是使用 MySQLdb.connect创建的连接却不一定能用来写,因为我在实践中多次运行发生了错误,所以我就改了。
其实,其他的数据库可以类似这种做法,给自己的项目配置一个连接类,使用的时候应该是这样的:
首先,你需要把代码放在一个单独的配置文件,比如config.py中
然后在你需要使用的地方,导入此配置文件
1 from config import con_analyze
2
3
4 class AnalyzeData:
5 def __init__(self):
6 # 此处初始化,可以带一个参数:database,默认为myanalyze
7 self.conn = con_analyze()
8 # self.conn2 = con_analyze("myanalyze_2")
9
10 def get_data(self, sql):
11 # 执行sql查询结果保存到df中
12 df = self.conn.query(sql=sql)
13
14 def store_data(self, df):
15 # 将dataframe类型的数据df,存入名为dd_name的数据表中
16 self.conn.store(df, 'db_name')
MongoDB
mongodb是一个非结构化数据库,里面存储的数据类似于json,是键值对的形式,如果你遇到了需要查询mongodb中的数据,下面我就简单介绍一下。
同样,也是要建立一个类,这是为了规范。
1 import pymongo
2 import pandas as pd
3
4 class Conn_Mongo:
5 """mongo 数据库连接"""
6
7 def __init__(self):
8 self.mongo_utoken = pymongo.MongoClient('mongodb://***:27000').utoken # 用户表
9
10 def get_user_data_mongo(self,list_id):
11 """
12 通过连接 mongo查找
13 """
14 user_data = pd.DataFrame(list(self.mongo_fotor.userinfo.find({'FToken': {'$in': list(list_id)}})))
15 return user_data
这个毕竟简单,就是一个查询操作,我是先传入一串id,根据id找到对应的信息。一般来说,mongodb的库容量都比较大,所以我是有针对的查询相关信息。
这里用到了pymongo库,通过它创建一个到相应地址(我用*隐掉了)的连接,后面的.utoken是对应的库名称,其实你也可以把它作为参数,在初始化的时候传进去。
后面查询的时候使用了find函数,其前面的userinfo是表的名称,find的参数也是键值对的形式,这里我指定了键的名称”FToken”,其值{‘$in’: list(list_id)}代表的意思是:在什么什么中。
将id 做成了一个list(为了大家理解,取名为list_id),相关语法大家可以查阅一下。
Flurry
如果你的工作涉及到了app的数据,那经常会使用Flurry获取数据。
Flurry是一个移动统计平台,虽然是国外的,但国内依然可以用(不像谷歌分析被禁了),ios和Android应用的运营数据都可以在上面统计查询。
如果你还没有,又想了解的,可以戳这里:Flurry(https://login.flurry.com/)
对,网页浏览的话,界面就是这样的。
常用的功能是用户数据
以及功能点击事件
不过,这不是我要说的重点,上面只是让你看一下Flurry长什么样,现在我要写python接口,将这些数据取出。
Flurry的api地址,请戳这里:Flurry API
这是创建分析报告的api,有别于开发的api
首先,我们需要去申请一个app token,用于获取连接权限,申请方法请参考:app access token(https://developer.yahoo.com/flurry/docs/api/code/apptoken/)
它是大一串字母
只要获取到了这个token,我们就可以创建一个url,用于获取Flurry里面的数据了,具体看如下的代码:
import pandas as pd
import json, requests
1 class Conn_Flurry:
2 """flurry api data"""
3 api_token = "******.****.****"
4 headers = {'Authorization': 'Bearer {}'.format(api_token)}
5 url = "https://api-metrics.flurry.com/public/v1/data/appEvent/day/app?metrics=activeDevices,newDevices,averageTimePerDevice&dateTime=2017-05-23/2017-05-24"
6
7 def get_results(self, url=url):
8 '''
9 这里使用的url是一个示例,也可以使用get_url函数创建需要的url传入此函数作为参数
10 '''
11 data = requests.get(url, headers=self.headers)
12 cleaned = json.loads(data.text, 'utf-8')
13 cleaned = pd.DataFrame(cleaned['rows'])
14 return cleaned
15
16 def get_url(self, table='appEvent', timegrain='day', dimensions='app/event', metrics='occurrences',
17 dateTime='2017-09-23/2017-05-24', filters=""):
18 '''
19 若filters为空, 不影响结果
20 标准的url:endpoint + '/table/timeGrain/dimension1/dimension2;show=all/dimension3{...}?metrics=[comma-separated-metrics]&dateTime=[..]&filters=[...]&topN=[..]&sort=[..]&having=[..]&format=[..]&timeZone=[..]'
21 App Usage url: endpoint+ "/appUsage/day?metrics=sessions,activeDevices,newDevices&dateTime=2016-06-01/2016-08-01&filters=app|name-in[appname]"
22 app event url: endpoint + "/appEvent/day/app/appVersion/event?metrics=occurrences&dateTime=2016-07-01/2016-07-03&filters=app|name-in[foo],event|name-in[login,register]"
23 app event url2: endpoint + "/appEvent/day/app/country?metrics=activeDevices,newDevices&dateTime=2016-07-01/2016-07-03&filters=app|name-in[foo],event|name-in[login]&topN=5&sort=activeDevices|desc"
24 event parameter: endpoint+ "/eventParams/day/app;show=all/event/paramName/paramValue?metrics=count&dateTime=2016-11-07/2016-11-08&filters=app|name-in[foo],event|name-in[level_complete]"
25 注意,dimensions的变化,当要看某一事件的具体信息时:app;show=all/event/paramName/paramValue,加了个show=all
26 注意filters里面filters的格式,可以选择app名称和事件名称
27 注意timegrain和datetime的关系,常见的就是day和month,datetime的格式也要跟着变
28 '''
29 endpoint = 'https://api-metrics.flurry.com/public/v1/data'
30 url = "{}/{}/{}/{}?metrics={}&dateTime={}&filters={}".format(endpoint, table, timegrain, dimensions, metrics,
31 dateTime, filters)
32 return url
代码稍微有点长,中间许多注释行,但总的来说就是两个步骤:
构建url
获取url对应的结果
但是细细说来,这里面涉及到的东西比较多,比如,为什么url的格式是这样的,还有headers为什么是那样构造的,还有结果的形式等等
我想说的是,这些在官网api上已有很详细的说明,我就不搬砖了,不过,如果你有任何疑问,欢迎在评论区留言,我知道的一定尽心解答。
1 url = self.conn_flurry.get_url('appUsage', 'month', 'app','averageTimePerSession,activeDevices,newDevices,sessions', self.time_range)
2 user_mobile = self.conn_flurry.get_results(url)
上面就是一个简单的应用,其中time_range应该是这样的格式
self.time_range = '2017-09/2017-10'
对于这个时间范围,Flurry默认是左闭右开的,即不包含10月
同理,如果是这样
'2017-09-23/2017-10-24'
那就代表从9月23号起,但是不包含10月24号的结果,这一点尤其要注意。如果你是拿某一段时间内的数据,就很容易忽略这点,导致少拿数据
如果是按天拿还好,有date这个维度,会提醒你到底拿到了哪些天的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15